Title:
|
P-injective group rings (English) |
Author:
|
Shen, Liang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
4 |
Year:
|
2020 |
Pages:
|
1103-1109 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A ring $R$ is called right P-injective if every homomorphism from a principal right ideal of $R$ to $R_R$ can be extended to a homomorphism from $R_R$ to $R_R$. Let $R$ be a ring and $G$ a group. Based on a result of Nicholson and Yousif, we prove that the group ring ${\rm RG}$ is right P-injective if and only if (a) $R$ is right P-injective; (b) $G$ is locally finite; and (c) for any finite subgroup $H$ of $G$ and any principal right ideal $I$ of ${\rm RH}$, if $f\in {\rm Hom}_R(I_R, R_R)$, then there exists $g\in {\rm Hom}_R({\rm RH}_R, R_R)$ such that $g|_I=f$. Similarly, we also obtain equivalent characterizations of $n$-injective group rings and F-injective group rings. (English) |
Keyword:
|
group ring |
Keyword:
|
P-injective ring |
Keyword:
|
$n$-injective ring |
Keyword:
|
F-injective ring |
MSC:
|
16D50 |
MSC:
|
16S34 |
idZBL:
|
07285982 |
idMR:
|
MR4181799 |
DOI:
|
10.21136/CMJ.2020.0159-19 |
. |
Date available:
|
2020-11-18T09:47:37Z |
Last updated:
|
2023-01-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148414 |
. |
Reference:
|
[1] Connell, I. G.: On the group ring.Can. J. Math. 15 (1963), 650-685. Zbl 0121.03502, MR 0153705, 10.4153/CJM-1963-067-0 |
Reference:
|
[2] Farkas, D. R.: A note on locally finite group algebras.Proc. Am. Math. Soc. 48 (1975), 26-28. Zbl 0303.16007, MR 0360670, 10.1090/S0002-9939-1975-0360670-9 |
Reference:
|
[3] Ikeda, M.: Some generalizations of quasi-Frobenius rings.Osaka Math. J. 3 (1951), 227-239. Zbl 0045.32003, MR 0046345 |
Reference:
|
[4] Koşan, M. T., Lee, T.-K., Zhou, Y.: On modules over group rings.Algebr. Represent. Theory 17 (2014), 87-102. Zbl 1307.16020, MR 3160714, 10.1007/s10468-012-9388-5 |
Reference:
|
[5] Nicholson, W. K., Yousif, M. F.: Principally injective rings.J. Algebra 174 (1995), 77-93. Zbl 0839.16004, MR 1332860, 10.1006/jabr.1995.1117 |
Reference:
|
[6] Nicholson, W. K., Yousif, M. F.: Quasi-Frobenius Rings.Cambridge Tracts in Mathematics 158, Cambridge University Press, Cambridge (2003). Zbl 1042.16009, MR 2003785, 10.1017/CBO9780511546525 |
Reference:
|
[7] Renault, G.: Sur les anneaux des groupes.C. R. Acad. Sci. Paris, Sér. A 273 (1971), 84-87 French. Zbl 0216.06503, MR 0288189 |
. |