Previous |  Up |  Next


Title: P-injective group rings (English)
Author: Shen, Liang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1103-1109
Summary lang: English
Category: math
Summary: A ring $R$ is called right P-injective if every homomorphism from a principal right ideal of $R$ to $R_R$ can be extended to a homomorphism from $R_R$ to $R_R$. Let $R$ be a ring and $G$ a group. Based on a result of Nicholson and Yousif, we prove that the group ring ${\rm RG}$ is right P-injective if and only if (a) $R$ is right P-injective; (b) $G$ is locally finite; and (c) for any finite subgroup $H$ of $G$ and any principal right ideal $I$ of ${\rm RH}$, if $f\in {\rm Hom}_R(I_R, R_R)$, then there exists $g\in {\rm Hom}_R({\rm RH}_R, R_R)$ such that $g|_I=f$. Similarly, we also obtain equivalent characterizations of $n$-injective group rings and F-injective group rings. (English)
Keyword: group ring
Keyword: P-injective ring
Keyword: $n$-injective ring
Keyword: F-injective ring
MSC: 16D50
MSC: 16S34
idZBL: 07285982
idMR: MR4181799
DOI: 10.21136/CMJ.2020.0159-19
Date available: 2020-11-18T09:47:37Z
Last updated: 2021-02-10
Stable URL:
Reference: [1] Connell, I. G.: On the group ring.Can. J. Math. 15 (1963), 650-685. Zbl 0121.03502, MR 0153705, 10.4153/CJM-1963-067-0
Reference: [2] Farkas, D. R.: A note on locally finite group algebras.Proc. Am. Math. Soc. 48 (1975), 26-28. Zbl 0303.16007, MR 0360670, 10.1090/S0002-9939-1975-0360670-9
Reference: [3] Ikeda, M.: Some generalizations of quasi-Frobenius rings.Osaka Math. J. 3 (1951), 227-239. Zbl 0045.32003, MR 0046345
Reference: [4] Koşan, M. T., Lee, T.-K., Zhou, Y.: On modules over group rings.Algebr. Represent. Theory 17 (2014), 87-102. Zbl 1307.16020, MR 3160714, 10.1007/s10468-012-9388-5
Reference: [5] Nicholson, W. K., Yousif, M. F.: Principally injective rings.J. Algebra 174 (1995), 77-93. Zbl 0839.16004, MR 1332860, 10.1006/jabr.1995.1117
Reference: [6] Nicholson, W. K., Yousif, M. F.: Quasi-Frobenius Rings.Cambridge Tracts in Mathematics 158, Cambridge University Press, Cambridge (2003). Zbl 1042.16009, MR 2003785, 10.1017/CBO9780511546525
Reference: [7] Renault, G.: Sur les anneaux des groupes.C. R. Acad. Sci. Paris, Sér. A 273 (1971), 84-87 French. Zbl 0216.06503, MR 0288189

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo