Previous |  Up |  Next

Article

Title: Nonassociative triples in involutory loops and in loops of small order (English)
Author: Drápal, Aleš
Author: Hora, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 459-479
Summary lang: English
.
Category: math
.
Summary: A loop of order $n$ possesses at least $3n^2-3n+1$ associative triples. However, no loop of order $n>1$ that achieves this bound seems to be known. If the loop is involutory, then it possesses at least $3n^2-2n$ associative triples. Involutory loops with $3n^2-2n$ associative triples can be obtained by prolongation of certain maximally nonassociative quasigroups whenever $n-1$ is a prime greater than or equal to $13$ or $n-1=p^{2k}$, $p$ an odd prime. For orders $n\le 9$ the minimum number of associative triples is reported for both general and involutory loops, and the structure of the corresponding loops is described. (English)
Keyword: quasigroup
Keyword: loop
Keyword: prolongation
Keyword: involutory loop
Keyword: associative triple
Keyword: maximally nonassociative
MSC: 05B15
MSC: 20N05
idZBL: Zbl 07332722
idMR: MR4230953
DOI: 10.14712/1213-7243.2020.037
.
Date available: 2021-02-25T12:37:40Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148658
.
Reference: [1] Dickson L. E.: On finite algebras.Nachr. Ges. Wiss. Göttingen (1905), 358–393.
Reference: [2] Drápal A., Lisoněk P.: Maximal nonassociativity via nearfields.Finite Fields Appl. 62 (2020), 101610, 27 pages. MR 4032787
Reference: [3] Drápal A., Valent V.: Extreme nonassociativity in order nine and beyond.J. Combin. Des. 28 (2020), no. 1, 33–48. MR 4033745, 10.1002/jcd.21679
Reference: [4] Drápal A., Wanless I. M.: Maximally nonassociative quasigroups via quadratic orthomorphisms.accepted in Algebr. Comb., available at arXiv:1912.07040v1 [math.CO] (2019), 13 pages.
Reference: [5] Evans A. B.: Orthogonal Latin Squares Based on Groups.Developments in Mathematics, 57, Springer, Cham, 2018. MR 3837138, 10.1007/978-3-319-94430-2_2
Reference: [6] Kepka T.: A note on associative triples of elements in cancellation groupoids.Comment. Math. Univ. Carolin. 21 (1980), no. 3, 479–487. MR 0590128
Reference: [7] Wanless I. M.: Diagonally cyclic Latin squares.European J. Combin. 25 (2004), no. 3, 393–413. MR 2036476, 10.1016/j.ejc.2003.09.014
Reference: [8] Wanless I. M.: Atomic Latin squares based on cyclotomic orthomorphisms.Electron. J. Combin. 12 (2005), Research Paper 22, 23 pages. MR 2134185, 10.37236/1919
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_5.pdf 277.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo