Previous |  Up |  Next

Article

Title: Normality, nuclear squares and Osborn identities (English)
Author: Drápal, Aleš
Author: Kinyon, Michael
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 481-500
Summary lang: English
.
Category: math
.
Summary: Let $Q$ be a loop. If $S\le Q$ is such that $\varphi(S) \subseteq S$ for each standard generator of\, Inn$\,Q$, then $S$ does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus. (English)
Keyword: loop
Keyword: normal subloop
Keyword: LC loop
Keyword: Buchsteiner loop
Keyword: Osborn loop
Keyword: nuclear identification
MSC: 20N05
idZBL: Zbl 07332723
idMR: MR4230954
DOI: 10.14712/1213-7243.2020.038
.
Date available: 2021-02-25T12:39:51Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148659
.
Reference: [1] Basarab A. S.: A class of WIP loops.Mat. Issled. 2 (1967), vyp. 2, 3–24 (Russian). MR 0227304
Reference: [2] Basarab A. S.: A certain class of $G$-loops.Mat. Issled. 3 (1968), vyp. 2 (8), 72–77 (Russian). MR 0255713
Reference: [3] Basarab A. S.: Moufang's theorem.Bul. Akad. Štiince RSS Moldoven, 1968, (1968), no. 1, 16–24 (Russian). MR 0237693
Reference: [4] Basarab A. S.: Isotopy of WIP loops.Mat. Issled. 5 (1970), vyp. 2 (16), 3–12 (Russian). MR 0284530
Reference: [5] Basarab A. S.: The Osborn loop.Studies in the theory of quasigroups and loops, 193, Izdat. “Štiinca”, Kishinev, 1973, pages 12–18 (Russian). MR 0369591
Reference: [6] Basarab A. S.: A class of LK-loops.Mat. Issled. 120 Bin. i $n$-arnye Kvazigruppy (1991), 3–7, 118 (Russian). MR 1121425
Reference: [7] Basarab A. S.: Osborn's $G$-loops.Quasigroups Related Systems 1 (1994), no. 1, 51–56. MR 1327945
Reference: [8] Basarab A. S.: Generalized Moufang $G$-loops.Quasigroups Related Systems 3 (1996), 1–5. MR 1745960
Reference: [9] Bates G. E., Kiokemeister F.: A note on homomorphic mappings of quasigroups into multiplicative systems.Bull. Amer. Math. Soc. 54 (1948), 1180–1185. Zbl 0034.29801, MR 0027768, 10.1090/S0002-9904-1948-09146-7
Reference: [10] Belousov V. D.: Foundations of the Theory of Quasigroups and Loops.Nauka, Moscow, 1967 (Russian). MR 0218483
Reference: [11] Bruck R. H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288, 10.1090/S0002-9947-1946-0017288-3
Reference: [12] Bruck R. H.: A Survey of Binary Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1958. Zbl 0141.01401, MR 0093552
Reference: [13] Csörgö P., Drápal A., Kinyon M. K.: Buchsteiner loops.Internat. J. Algebra Comput. 19 (2009), no. 8, 1049–1088. MR 2603718
Reference: [14] Drápal A.: Conjugacy closed loops and their multiplication groups.J. Algebra 272 (2004), no. 2, 838–850. MR 2028083, 10.1016/j.jalgebra.2003.06.011
Reference: [15] Drápal A.: On multiplication groups of left conjugacy closed loops.Comment. Math. Univ. Carolin. 45 (2004), no. 2, 223–236. MR 2075271
Reference: [16] Drápal A.: On multiplicative equivalences that are totally incompatible with division.Algebra Universalis 80 (2019), no. 3, Paper No. 32, 9 pages. MR 3988676, 10.1007/s00012-019-0605-5
Reference: [17] Drápal A., Jedlička P.: On loop identities that can be obtained by a nuclear identification.European J. Combin. 31 (2010), no. 7, 1907–1923. MR 2673029, 10.1016/j.ejc.2010.01.007
Reference: [18] Fenyves F.: Extra loops. I..Publ. Math. Debrecen 15 (1968), 235–238. MR 0237695
Reference: [19] Fenyves F.: Extra loops. II. On loops with identities of Bol–Moufang type.Publ. Math. Debrecen 16 (1969), 187–192. MR 0262409
Reference: [20] Goodaire E. G., Robinson D. A.: Some special conjugacy closed loops.Canad. Math. Bull. 33 (1990), no. 1, 73–78. MR 1036860, 10.4153/CMB-1990-013-9
Reference: [21] Hrůza B.: Sur quelques propriétés des inverse-faibles.Knižnice Odborn. Věd. Spisů Vysoké Učení Tech. v Brně B-56 (1975), 101–107 (French). MR 0387470
Reference: [22] Huthnance E. D., Jr.: A Theory of Generalized Moufang Loops.Thesis (Ph.D.)–Georgia Institute of Technology, Georgia, 1969. MR 2617787
Reference: [23] Jaiyéolá T. G., Adéníran J. O.: A new characterization of Osborn–Buchsteiner loops.Quasigroups Related Systems 20 (2012), no. 2, 233–238. MR 3232744
Reference: [24] Kinyon M.: A survey of Osborn loops.plenary talk at the First Milehigh Conference on Loops, Quasigroups, & Nonassociative Systems, University of Denver, Denver, CO, 2005, https://www.cs.du.edu/̴ petr/milehigh/2005/kinyon_talk.pdf.
Reference: [25] Kinyon M. K., Kunen K., Phillips J. D.: Diassociativity in conjugacy closed loops.Comm. Algebra 32 (2004), no. 2, 767–786. MR 2101839, 10.1081/AGB-120027928
Reference: [26] Kunen K.: The structure of conjugacy closed loops.Trans. Amer. Math. Soc. 352 (2000), no. 6, 2889–2911. MR 1615991, 10.1090/S0002-9947-00-02350-3
Reference: [27] Nagy P. T., Strambach K.: Loops as invariant sections in groups, and their geometry.Canad. J. Math. 46 (1994), no. 5, 1027–1056. MR 1295130, 10.4153/CJM-1994-059-8
Reference: [28] Osborn J. M.: Loops with the weak inverse property.Pacific J. Math. 10 (1960), 295–304. MR 0111800, 10.2140/pjm.1960.10.295
Reference: [29] Pflugfelder H. O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [30] Phillips J. D., Vojtěchovský P.: The varieties of loops of Bol–Moufang type.Algebra Universalis 54 (2005), no. 3, 259–271. MR 2219409, 10.1007/s00012-005-1941-1
Reference: [31] Phillips J. D., Vojtěchovský P.: C-loops: an introduction.Publ. Math. Debrecen 68 (2006), no. 1–2, 115–137. MR 2213546
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_6.pdf 284.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo