Previous |  Up |  Next

Article

Keywords:
loop; normal subloop; LC loop; Buchsteiner loop; Osborn loop; nuclear identification
Summary:
Let $Q$ be a loop. If $S\le Q$ is such that $\varphi(S) \subseteq S$ for each standard generator of\, Inn$\,Q$, then $S$ does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus.
References:
[1] Basarab A. S.: A class of WIP loops. Mat. Issled. 2 (1967), vyp. 2, 3–24 (Russian). MR 0227304
[2] Basarab A. S.: A certain class of $G$-loops. Mat. Issled. 3 (1968), vyp. 2 (8), 72–77 (Russian). MR 0255713
[3] Basarab A. S.: Moufang's theorem. Bul. Akad. Štiince RSS Moldoven, 1968, (1968), no. 1, 16–24 (Russian). MR 0237693
[4] Basarab A. S.: Isotopy of WIP loops. Mat. Issled. 5 (1970), vyp. 2 (16), 3–12 (Russian). MR 0284530
[5] Basarab A. S.: The Osborn loop. Studies in the theory of quasigroups and loops, 193, Izdat. “Štiinca”, Kishinev, 1973, pages 12–18 (Russian). MR 0369591
[6] Basarab A. S.: A class of LK-loops. Mat. Issled. 120 Bin. i $n$-arnye Kvazigruppy (1991), 3–7, 118 (Russian). MR 1121425
[7] Basarab A. S.: Osborn's $G$-loops. Quasigroups Related Systems 1 (1994), no. 1, 51–56. MR 1327945
[8] Basarab A. S.: Generalized Moufang $G$-loops. Quasigroups Related Systems 3 (1996), 1–5. MR 1745960
[9] Bates G. E., Kiokemeister F.: A note on homomorphic mappings of quasigroups into multiplicative systems. Bull. Amer. Math. Soc. 54 (1948), 1180–1185. DOI 10.1090/S0002-9904-1948-09146-7 | MR 0027768 | Zbl 0034.29801
[10] Belousov V. D.: Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967 (Russian). MR 0218483
[11] Bruck R. H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245–354. DOI 10.1090/S0002-9947-1946-0017288-3 | MR 0017288 | Zbl 0061.02201
[12] Bruck R. H.: A Survey of Binary Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1958. MR 0093552 | Zbl 0141.01401
[13] Csörgö P., Drápal A., Kinyon M. K.: Buchsteiner loops. Internat. J. Algebra Comput. 19 (2009), no. 8, 1049–1088. MR 2603718
[14] Drápal A.: Conjugacy closed loops and their multiplication groups. J. Algebra 272 (2004), no. 2, 838–850. DOI 10.1016/j.jalgebra.2003.06.011 | MR 2028083
[15] Drápal A.: On multiplication groups of left conjugacy closed loops. Comment. Math. Univ. Carolin. 45 (2004), no. 2, 223–236. MR 2075271
[16] Drápal A.: On multiplicative equivalences that are totally incompatible with division. Algebra Universalis 80 (2019), no. 3, Paper No. 32, 9 pages. DOI 10.1007/s00012-019-0605-5 | MR 3988676
[17] Drápal A., Jedlička P.: On loop identities that can be obtained by a nuclear identification. European J. Combin. 31 (2010), no. 7, 1907–1923. DOI 10.1016/j.ejc.2010.01.007 | MR 2673029
[18] Fenyves F.: Extra loops. I. Publ. Math. Debrecen 15 (1968), 235–238. MR 0237695
[19] Fenyves F.: Extra loops. II. On loops with identities of Bol–Moufang type. Publ. Math. Debrecen 16 (1969), 187–192. MR 0262409
[20] Goodaire E. G., Robinson D. A.: Some special conjugacy closed loops. Canad. Math. Bull. 33 (1990), no. 1, 73–78. DOI 10.4153/CMB-1990-013-9 | MR 1036860
[21] Hrůza B.: Sur quelques propriétés des inverse-faibles. Knižnice Odborn. Věd. Spisů Vysoké Učení Tech. v Brně B-56 (1975), 101–107 (French). MR 0387470
[22] Huthnance E. D., Jr.: A Theory of Generalized Moufang Loops. Thesis (Ph.D.)–Georgia Institute of Technology, Georgia, 1969. MR 2617787
[23] Jaiyéolá T. G., Adéníran J. O.: A new characterization of Osborn–Buchsteiner loops. Quasigroups Related Systems 20 (2012), no. 2, 233–238. MR 3232744
[24] Kinyon M.: A survey of Osborn loops. plenary talk at the First Milehigh Conference on Loops, Quasigroups, & Nonassociative Systems, University of Denver, Denver, CO, 2005, https://www.cs.du.edu/̴ petr/milehigh/2005/kinyon_talk.pdf.
[25] Kinyon M. K., Kunen K., Phillips J. D.: Diassociativity in conjugacy closed loops. Comm. Algebra 32 (2004), no. 2, 767–786. DOI 10.1081/AGB-120027928 | MR 2101839
[26] Kunen K.: The structure of conjugacy closed loops. Trans. Amer. Math. Soc. 352 (2000), no. 6, 2889–2911. DOI 10.1090/S0002-9947-00-02350-3 | MR 1615991
[27] Nagy P. T., Strambach K.: Loops as invariant sections in groups, and their geometry. Canad. J. Math. 46 (1994), no. 5, 1027–1056. DOI 10.4153/CJM-1994-059-8 | MR 1295130
[28] Osborn J. M.: Loops with the weak inverse property. Pacific J. Math. 10 (1960), 295–304. DOI 10.2140/pjm.1960.10.295 | MR 0111800
[29] Pflugfelder H. O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[30] Phillips J. D., Vojtěchovský P.: The varieties of loops of Bol–Moufang type. Algebra Universalis 54 (2005), no. 3, 259–271. DOI 10.1007/s00012-005-1941-1 | MR 2219409
[31] Phillips J. D., Vojtěchovský P.: C-loops: an introduction. Publ. Math. Debrecen 68 (2006), no. 1–2, 115–137. MR 2213546
Partner of
EuDML logo