Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
fluid-structure interaction; contact; extended finite element method; discontinuous Galerkin; Nitsche's method
Summary:
In this work, we address the problem of fluid-structure interaction (FSI) with moving structures that may come into contact. We propose a penalization contact algorithm implemented in an unfitted numerical framework designed to treat large displacements. In the proposed method, the fluid mesh is fixed and the structure meshes are superimposed to it without any constraint on the conformity. Thanks to the Extended Finite Element Method (XFEM), we can treat discontinuities of the fluid solution on the mesh elements intersecting the structure. The coupling conditions at the fluid-structure interface are enforced via a discontinuous Galerkin mortaring technique, which is a penalization method that ensures the consistency of the scheme with the underlining problem. Concerning the contact problem, we consider a frictionless contact model in a master/slave approach. By considering the coupled FSI-contact problem, we perform some numerical tests to assess the sensitivity of the proposed method with respect to the discretization and contact parameters and we show some examples in the case of contact between a flexible body and a rigid wall and between two deformable structures.
References:
[1] Ager, C., Schott, B., Vuong, A.-T., Popp, A., Wall, W. A.: A consistent approach for fluidstructure-contact interaction based on a porous flow model for rough surface contact. Int. J. Numer. Methods Eng. 119 (2019), 1345-1378. DOI 10.1002/nme.6094 | MR 4007823
[2] Ager, C., Seitz, A., Wall, W. A.: A consistent and comprehensive computational approach for general fluid-structure-contact interaction problems. Available at https://arxiv.org/abs/1905.09744 (2019), 34 pages.
[3] Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92 (1991), 353-375. DOI 10.1016/0045-7825(91)90022-X | MR 1141048 | Zbl 0825.76353
[4] Alauzet, F., Fabrèges, B., Fernández, M. A., Landajuela, M.: Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput Methods Appl. Mech. Eng. 301 (2016), 300-335. DOI 10.1016/j.cma.2015.12.015 | MR 3456852 | Zbl 1423.76201
[5] Antonietti, P., Verani, M., Vergara, C., Zonca, S.: Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids. Finite Elem. Anal. Des. 159 (2019), 1-14. DOI 10.1016/j.finel.2019.02.002 | MR 3924531
[6] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749-1779. DOI 10.1137/S0036142901384162 | MR 1885715 | Zbl 1008.65080
[7] Baaijens, F. P. T.: A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Numer. Methods Fluids 35 (2001), 743-761. DOI 10.1002/fld.153 | MR 1826849 | Zbl 0979.76044
[8] Basting, S., Quaini, A., Čanić, S., Glowinski, R.: Extended ALE method for fluid-structure interaction problems with large structural displacements. J. Comput. Phys. 331 (2017), 312-336. DOI 10.1016/j.jcp.2016.11.043 | MR 3588694 | Zbl 1378.74020
[9] Bazilevs, Y., Calo, V. M., Zhang, Y., Hughes, T. J. R.: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38 (2006), 310-322. DOI 10.1007/s00466-006-0084-3 | MR 2443159 | Zbl 1161.74020
[10] Bazilevs, Y., Hsu, M.-C., Kiendl, J., Wüchner, R., Bletzinger, K.-U.: 3D simulation of wind turbine rotors at full scale II. Fluid-structure interaction modeling with composite blades. Int. J. Numer. Methods Fluids 65 (2011), 236-253. DOI 10.1002/fld.2454 | Zbl 1428.76087
[11] Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50 (2001), 993-1013. DOI 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M | Zbl 0981.74062
[12] Boffi, D., Gastaldi, L.: A finite element approach for the immersed boundary method. Comput. Struct. 81 (2003), 491-501. DOI 10.1016/S0045-7949(02)00404-2 | MR 2001876
[13] Boffi, D., Gastaldi, L.: A fictitious domain approach with Lagrange multiplier for fluid-structure interactions. Numer. Math. 135 (2017), 711-732. DOI 10.1007/s00211-016-0814-1 | MR 3606460 | Zbl 06695815
[14] Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method. Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. DOI 10.1142/S0218202507002352 | MR 2359913 | Zbl 1186.76661
[15] Borazjani, I.: Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 257 (2013), 103-116. DOI 10.1016/j.cma.2013.01.010 | MR 3043480 | Zbl 1286.74030
[16] Borazjani, I., Ge, L., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227 (2008), 7587-7620. DOI 10.1016/j.jcp.2008.04.028 | MR 2437583 | Zbl 1213.76129
[17] Burman, E.: Ghost penalty. C. R., Math., Acad. Sci. Paris 348 (2010), 1217-1220. DOI 10.1016/j.crma.2010.10.006 | MR 2738930 | Zbl 1204.65142
[18] Burman, E., Fernández, M. A.: Stabilized explicit coupling for fluid-structure interaction using Nitsche's method. C. R., Math., Acad. Sci. Paris 345 (2007), 467-472. DOI 10.1016/j.crma.2007.09.010 | MR 2367927 | Zbl 1126.74047
[19] Burman, E., Fernández, M. A.: Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198 (2009), 766-784. DOI 10.1016/j.cma.2008.10.012 | MR 2498525 | Zbl 1229.76045
[20] Burman, E., Fernández, M. A.: An unfitted Nitsche method for incompressible fluidstructure interaction using overlapping meshes. Comput. Methods Appl. Mech. Eng. 279 (2014), 497-514. DOI 10.1016/j.cma.2014.07.007 | MR 3253479 | Zbl 1423.74867
[21] Burman, E., Fernández, M. A., Frei, S.: A Nitsche-based formulation for fluid-structure interactions with contact. ESAIM, Math. Model. Numer. Anal. 54 (2020), 531-564. DOI 10.1051/m2an/2019072 | MR 4065144 | Zbl 1434.74102
[22] Burman, E., Fernández, M. A., Hansbo, P.: Continuous interior penalty finite element method for Oseen's equations. SIAM J. Numer. Anal. 44 (2006), 1248-1274. DOI 10.1137/040617686 | MR 2231863 | Zbl 1344.76049
[23] Burman, E., Hansbo, P., Larson, M. G.: Augmented Lagrangian and Galerkin least-squares methods for membrane contact. Int. J. Numer. Methods Eng. 114 (2018), 1179-1191. DOI 10.1002/nme.5781 | MR 3825018
[24] Burman, E., Hansbo, P., Larson, M. G.: Augmented Lagrangian finite element methods for contact problems. ESAIM, Math. Model. Numer. Anal. 53 (2019), 173-195. DOI 10.1051/m2an/2018047 | MR 3937350 | Zbl 1422.65374
[25] Chouly, F., Fabre, M., Hild, P., Mlika, R., Pousin, J., Renard, Y.: An overview of recent results on Nitsche's method for contact problems. Geometrically Unfitted Finite Element Methods and Applications Lecture Notes in Computational Science and Engineering 121. Springer, Cham (2017), 93-141. DOI 10.1007/978-3-319-71431-8_4 | MR 3806649 | Zbl 1390.74003
[26] Chouly, F., Hild, P.: A Nitsche-based method for unilateral contact problems: Numerical analysis. SIAM J. Numer. Anal. 51 (2013), 1295-1307. DOI 10.1137/12088344X | MR 3045657 | Zbl 1268.74033
[27] Chouly, F., Hild, P.: On convergence of the penalty method for unilateral contact problems. Appl. Numer. Math. 65 (2013), 27-40. DOI 10.1016/j.apnum.2012.10.003 | MR 3008186 | Zbl 1312.74018
[28] Chouly, F., Mlika, R., Renard, Y.: An unbiased Nitsche's approximation of the frictional contact between two elastic structures. Numer. Math. 139 (2018), 593-631. DOI 10.1007/s00211-018-0950-x | MR 3814607 | Zbl 1391.74169
[29] Chouly, F., Renard, Y.: Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems. Adv. Model. Simul. Eng. Sci. 5 (2018), Article ID 31, 38 pages. DOI 10.1186/s40323-018-0124-5
[30] Donea, J., Giuliani, S., Halleux, J. P.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723. DOI 10.1016/0045-7825(82)90128-1 | Zbl 0508.73063
[31] Farhat, C., Lesoinne, M., Tallec, P. Le: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods App. Mech. Eng. 157 (1998), 95-114. DOI 10.1016/S0045-7825(97)00216-8 | MR 1624215 | Zbl 0951.74015
[32] Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999), 105-131. MR 1699243 | Zbl 0942.65113
[33] Formaggia, L., Vergara, C., Zonca, S.: Unfitted extended finite elements for composite grids. Comput. Math. Appl. 76 (2018), 893-904. DOI 10.1016/j.camwa.2018.05.028 | MR 3830769 | Zbl 1428.65081
[34] Frei, S.: Eulerian Finite Element Methods for Interface Problems and Fluid-Structure Interactions: PhD. Thesis. Heidelberg University, Heildelberg (2016). DOI 10.11588/heidok.00021590
[35] Frei, S., Richter, T., Wick, T.: Long-term simulation of large deformation, mechanochemical fluid-structure interactions in ALE and fully Eulerian coordinates. J. Comput. Phys. 321 (2016), 874-891. DOI 10.1016/j.jcp.2016.06.015 | MR 3527595 | Zbl 1349.76202
[36] Gerstenberger, A., Wall, W. A.: An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 197 (2008), 1699-1714. DOI 10.1016/j.cma.2007.07.002 | MR 2399863 | Zbl 1194.76117
[37] Glowinski, R., Pan, T.-W., Periaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111 (1994), 283-303. DOI 10.1016/0045-7825(94)90135-X | MR 1259864 | Zbl 0845.73078
[38] Griffith, B. E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28 (2012), 317-345. DOI 10.1002/cnm.1445 | MR 2910281 | Zbl 1243.92017
[39] Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004), 3523-3540. DOI 10.1016/j.cma.2003.12.041 | MR 2075053 | Zbl 1068.74076
[40] Hansbo, P., Hermansson, J., Svedberg, T.: Nitsche's method combined with space-time finite elements for ALE fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 193 (2004), 4195-4206. DOI 10.1016/j.cma.2003.09.029 | MR 2087009 | Zbl 1175.74082
[41] Hirt, C. W., Amsden, A. A., Cook, J. L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (1974), 227-253. DOI 10.1016/0021-9991(74)90051-5 | Zbl 0292.76018
[42] Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics, Philadelphia (1988). DOI 10.1137/1.9781611970845 | MR 0961258 | Zbl 0685.73002
[44] Liu, Y., Liu, W. K.: Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220 (2006), 139-154. DOI 10.1016/j.jcp.2006.05.010 | MR 2281624 | Zbl 1102.92010
[45] Marom, G.: Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Methods Eng. 22 (2015), 595-620. DOI 10.1007/s11831-014-9133-9 | MR 3402525 | Zbl 1348.74099
[46] Massing, A., Larson, M. G., Logg, A., Rognes, M. E.: A Nitsche-based cut finite element method for a fluid-structure interaction problem. Commun. Appl. Math. Comput. Sci. 10 (2015), 97-120. DOI 10.2140/camcos.2015.10.97 | MR 3402347 | Zbl 1326.74122
[47] Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (2005), 239-261. DOI 10.1146/annurev.fluid.37.061903.175743 | MR 2115343 | Zbl 1117.76049
[48] Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999), 131-150. DOI 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J | MR 3925464 | Zbl 0955.74066
[49] Oñate, E., Celigueta, M. A., Idelsohn, S. R., Salazar, F., Suárez, B.: Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput. Mech. 48 (2011), 307-318. DOI 10.1007/s00466-011-0617-2 | MR 2833086 | Zbl 1398.76120
[50] Patankar, N. A., Singh, P., Joseph, D. D., Glowinski, R., Pan, T.-W.: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000), 1509-1524. DOI 10.1016/S0301-9322(99)00100-7 | MR 2436653 | Zbl 1137.76712
[51] Peskin, C. S.: Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10 (1972), 252-271. DOI 10.1016/0021-9991(72)90065-4 | MR 0475298 | Zbl 0244.92002
[52] Peskin, C. S.: The immersed boundary method. Acta Numerica 11 (2002), 479-517. DOI 10.1017/S0962492902000077 | MR 2009378 | Zbl 1123.74309
[53] Rannacher, R., Richter, T.: An adaptive finite element method for fluid-structure interaction problems based on a fully Eulerian formulation. Fluid Structure Interaction II. Modelling, Simulation, Optimization Lecture Notes in Computational Science and Engineering 73. Springer, Berlin (2010), 159-191. DOI 10.1007/978-3-642-14206-2_7 | MR 3050403 | Zbl 1214.76005
[54] Rega, G.: Nonlinear vibrations of suspended cables I. Modeling and analysis. Appl. Mech. Rev. 57 (2004), 443-478. DOI 10.1115/1.1777224
[55] Richter, T.: A fully Eulerian formulation for fluid-structure-interaction problems. J. Comput. Phys. 233 (2013), 227-240. DOI 10.1016/j.jcp.2012.08.047 | MR 3000928
[56] Richter, T.: Fluid-Structure Interactions: Models, Analysis and Finite Elements. Lecture Notes in Computational Science and Engineering 118. Springer, Cham (2017). DOI 10.1007/978-3-319-63970-3 | MR 3709400 | Zbl 1374.76001
[57] Richter, T., Wick, T.: Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput. Methods Appl. Mech. Eng. 199 (2010), 2633-2642. DOI 10.1016/j.cma.2010.04.016 | MR 2728815 | Zbl 1231.74436
[58] Saksono, P. H., Dettmer, W. G., Perić, D.: An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction. Int. J. Numer. Methods Eng. 71 (2007), 1009-1050. DOI 10.1002/nme.1971 | MR 2348756 | Zbl 1194.76140
[59] Vergara, C., Zonca, S.: Extended finite elements method for fluid-structure interaction with an immersed thick non-linear structure. Mathematical and Numerical Modeling of the Cardiovascular System and Applications SEMA SIMAI Springer Series 16. Springer, Cham (2018), 209-243. DOI 10.1007/978-3-319-96649-6_9 | MR 3887547
[60] Wriggers, P., Zavarise, G.: Computational contact mechanics. Encyclopedia of Computational Mechanics II. Solids and Structures John Wiley & Sons, Chichester (2004), Article ID 6. DOI 10.1002/0470091355.ecm033
[61] Xu, D., Kaliviotis, E., Munjiza, A., Avital, E., Ji, C., Williams, J.: Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 46 (2013), 1810-1817. DOI 10.1016/j.jbiomech.2013.05.010
[62] Zhang, H., Liu, L., Dong, M., Sun, H.: Analysis of wind-induced vibration of fluid-structure interaction system for isolated aqueduct bridge. Eng. Struct. 46 (2013), 28-37. DOI 10.1016/j.engstruct.2012.07.019
[63] Zonca, S.: Unfitted Numerical Methods for Fluid-Structure Interaction Arising Between an Incompressible Fluid and an Immersed Thick Structure: PhD. Thesis. Politecnico di Milano, Milano (2018).
[64] Zonca, S., Vergara, C., Formaggia, L.: An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach. SIAM J. Sci. Comput. 40 (2018), B59--B84. DOI 10.1137/16M1097602 | MR 3745000 | Zbl 1395.74087
Partner of
EuDML logo