Previous |  Up |  Next

Article

Title: An XFEM/DG approach for fluid-structure interaction problems with contact (English)
Author: Formaggia, Luca
Author: Gatti, Federico
Author: Zonca, Stefano
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 2
Year: 2021
Pages: 183-211
Summary lang: English
.
Category: math
.
Summary: In this work, we address the problem of fluid-structure interaction (FSI) with moving structures that may come into contact. We propose a penalization contact algorithm implemented in an unfitted numerical framework designed to treat large displacements. In the proposed method, the fluid mesh is fixed and the structure meshes are superimposed to it without any constraint on the conformity. Thanks to the Extended Finite Element Method (XFEM), we can treat discontinuities of the fluid solution on the mesh elements intersecting the structure. The coupling conditions at the fluid-structure interface are enforced via a discontinuous Galerkin mortaring technique, which is a penalization method that ensures the consistency of the scheme with the underlining problem. Concerning the contact problem, we consider a frictionless contact model in a master/slave approach. By considering the coupled FSI-contact problem, we perform some numerical tests to assess the sensitivity of the proposed method with respect to the discretization and contact parameters and we show some examples in the case of contact between a flexible body and a rigid wall and between two deformable structures. (English)
Keyword: fluid-structure interaction
Keyword: contact
Keyword: extended finite element method
Keyword: discontinuous Galerkin
Keyword: Nitsche's method
MSC: 65N30
MSC: 74F10
MSC: 76M10
idZBL: 07332695
idMR: MR4226456
DOI: 10.21136/AM.2021.0310-19
.
Date available: 2021-03-05T10:35:38Z
Last updated: 2023-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148720
.
Reference: [1] Ager, C., Schott, B., Vuong, A.-T., Popp, A., Wall, W. A.: A consistent approach for fluidstructure-contact interaction based on a porous flow model for rough surface contact.Int. J. Numer. Methods Eng. 119 (2019), 1345-1378. MR 4007823, 10.1002/nme.6094
Reference: [2] Ager, C., Seitz, A., Wall, W. A.: A consistent and comprehensive computational approach for general fluid-structure-contact interaction problems.Available at https://arxiv.org/abs/1905.09744 (2019), 34 pages.
Reference: [3] Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods.Comput. Methods Appl. Mech. Eng. 92 (1991), 353-375. Zbl 0825.76353, MR 1141048, 10.1016/0045-7825(91)90022-X
Reference: [4] Alauzet, F., Fabrèges, B., Fernández, M. A., Landajuela, M.: Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures.Comput Methods Appl. Mech. Eng. 301 (2016), 300-335. Zbl 1423.76201, MR 3456852, 10.1016/j.cma.2015.12.015
Reference: [5] Antonietti, P., Verani, M., Vergara, C., Zonca, S.: Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids.Finite Elem. Anal. Des. 159 (2019), 1-14. MR 3924531, 10.1016/j.finel.2019.02.002
Reference: [6] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [7] Baaijens, F. P. T.: A fictitious domain/mortar element method for fluid-structure interaction.Int. J. Numer. Methods Fluids 35 (2001), 743-761. Zbl 0979.76044, MR 1826849, 10.1002/fld.153
Reference: [8] Basting, S., Quaini, A., Čanić, S., Glowinski, R.: Extended ALE method for fluid-structure interaction problems with large structural displacements.J. Comput. Phys. 331 (2017), 312-336. Zbl 1378.74020, MR 3588694, 10.1016/j.jcp.2016.11.043
Reference: [9] Bazilevs, Y., Calo, V. M., Zhang, Y., Hughes, T. J. R.: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow.Comput. Mech. 38 (2006), 310-322. Zbl 1161.74020, MR 2443159, 10.1007/s00466-006-0084-3
Reference: [10] Bazilevs, Y., Hsu, M.-C., Kiendl, J., Wüchner, R., Bletzinger, K.-U.: 3D simulation of wind turbine rotors at full scale II. Fluid-structure interaction modeling with composite blades.Int. J. Numer. Methods Fluids 65 (2011), 236-253. Zbl 1428.76087, 10.1002/fld.2454
Reference: [11] Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements.Int. J. Numer. Methods Eng. 50 (2001), 993-1013. Zbl 0981.74062, 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
Reference: [12] Boffi, D., Gastaldi, L.: A finite element approach for the immersed boundary method.Comput. Struct. 81 (2003), 491-501. MR 2001876, 10.1016/S0045-7949(02)00404-2
Reference: [13] Boffi, D., Gastaldi, L.: A fictitious domain approach with Lagrange multiplier for fluid-structure interactions.Numer. Math. 135 (2017), 711-732. Zbl 06695815, MR 3606460, 10.1007/s00211-016-0814-1
Reference: [14] Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method.Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. Zbl 1186.76661, MR 2359913, 10.1142/S0218202507002352
Reference: [15] Borazjani, I.: Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves.Comput. Methods Appl. Mech. Eng. 257 (2013), 103-116. Zbl 1286.74030, MR 3043480, 10.1016/j.cma.2013.01.010
Reference: [16] Borazjani, I., Ge, L., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies.J. Comput. Phys. 227 (2008), 7587-7620. Zbl 1213.76129, MR 2437583, 10.1016/j.jcp.2008.04.028
Reference: [17] Burman, E.: Ghost penalty.C. R., Math., Acad. Sci. Paris 348 (2010), 1217-1220. Zbl 1204.65142, MR 2738930, 10.1016/j.crma.2010.10.006
Reference: [18] Burman, E., Fernández, M. A.: Stabilized explicit coupling for fluid-structure interaction using Nitsche's method.C. R., Math., Acad. Sci. Paris 345 (2007), 467-472. Zbl 1126.74047, MR 2367927, 10.1016/j.crma.2007.09.010
Reference: [19] Burman, E., Fernández, M. A.: Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility.Comput. Methods Appl. Mech. Eng. 198 (2009), 766-784. Zbl 1229.76045, MR 2498525, 10.1016/j.cma.2008.10.012
Reference: [20] Burman, E., Fernández, M. A.: An unfitted Nitsche method for incompressible fluidstructure interaction using overlapping meshes.Comput. Methods Appl. Mech. Eng. 279 (2014), 497-514. Zbl 1423.74867, MR 3253479, 10.1016/j.cma.2014.07.007
Reference: [21] Burman, E., Fernández, M. A., Frei, S.: A Nitsche-based formulation for fluid-structure interactions with contact.ESAIM, Math. Model. Numer. Anal. 54 (2020), 531-564. Zbl 1434.74102, MR 4065144, 10.1051/m2an/2019072
Reference: [22] Burman, E., Fernández, M. A., Hansbo, P.: Continuous interior penalty finite element method for Oseen's equations.SIAM J. Numer. Anal. 44 (2006), 1248-1274. Zbl 1344.76049, MR 2231863, 10.1137/040617686
Reference: [23] Burman, E., Hansbo, P., Larson, M. G.: Augmented Lagrangian and Galerkin least-squares methods for membrane contact.Int. J. Numer. Methods Eng. 114 (2018), 1179-1191. MR 3825018, 10.1002/nme.5781
Reference: [24] Burman, E., Hansbo, P., Larson, M. G.: Augmented Lagrangian finite element methods for contact problems.ESAIM, Math. Model. Numer. Anal. 53 (2019), 173-195. Zbl 1422.65374, MR 3937350, 10.1051/m2an/2018047
Reference: [25] Chouly, F., Fabre, M., Hild, P., Mlika, R., Pousin, J., Renard, Y.: An overview of recent results on Nitsche's method for contact problems.Geometrically Unfitted Finite Element Methods and Applications Lecture Notes in Computational Science and Engineering 121. Springer, Cham (2017), 93-141. Zbl 1390.74003, MR 3806649, 10.1007/978-3-319-71431-8_4
Reference: [26] Chouly, F., Hild, P.: A Nitsche-based method for unilateral contact problems: Numerical analysis.SIAM J. Numer. Anal. 51 (2013), 1295-1307. Zbl 1268.74033, MR 3045657, 10.1137/12088344X
Reference: [27] Chouly, F., Hild, P.: On convergence of the penalty method for unilateral contact problems.Appl. Numer. Math. 65 (2013), 27-40. Zbl 1312.74018, MR 3008186, 10.1016/j.apnum.2012.10.003
Reference: [28] Chouly, F., Mlika, R., Renard, Y.: An unbiased Nitsche's approximation of the frictional contact between two elastic structures.Numer. Math. 139 (2018), 593-631. Zbl 1391.74169, MR 3814607, 10.1007/s00211-018-0950-x
Reference: [29] Chouly, F., Renard, Y.: Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems.Adv. Model. Simul. Eng. Sci. 5 (2018), Article ID 31, 38 pages. 10.1186/s40323-018-0124-5
Reference: [30] Donea, J., Giuliani, S., Halleux, J. P.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions.Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723. Zbl 0508.73063, 10.1016/0045-7825(82)90128-1
Reference: [31] Farhat, C., Lesoinne, M., Tallec, P. Le: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity.Comput. Methods App. Mech. Eng. 157 (1998), 95-114. Zbl 0951.74015, MR 1624215, 10.1016/S0045-7825(97)00216-8
Reference: [32] Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements.East-West J. Numer. Math. 7 (1999), 105-131. Zbl 0942.65113, MR 1699243
Reference: [33] Formaggia, L., Vergara, C., Zonca, S.: Unfitted extended finite elements for composite grids.Comput. Math. Appl. 76 (2018), 893-904. Zbl 1428.65081, MR 3830769, 10.1016/j.camwa.2018.05.028
Reference: [34] Frei, S.: Eulerian Finite Element Methods for Interface Problems and Fluid-Structure Interactions: PhD. Thesis.Heidelberg University, Heildelberg (2016). 10.11588/heidok.00021590
Reference: [35] Frei, S., Richter, T., Wick, T.: Long-term simulation of large deformation, mechanochemical fluid-structure interactions in ALE and fully Eulerian coordinates.J. Comput. Phys. 321 (2016), 874-891. Zbl 1349.76202, MR 3527595, 10.1016/j.jcp.2016.06.015
Reference: [36] Gerstenberger, A., Wall, W. A.: An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction.Comput. Methods Appl. Mech. Eng. 197 (2008), 1699-1714. Zbl 1194.76117, MR 2399863, 10.1016/j.cma.2007.07.002
Reference: [37] Glowinski, R., Pan, T.-W., Periaux, J.: A fictitious domain method for Dirichlet problem and applications.Comput. Methods Appl. Mech. Eng. 111 (1994), 283-303. Zbl 0845.73078, MR 1259864, 10.1016/0045-7825(94)90135-X
Reference: [38] Griffith, B. E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.Int. J. Numer. Methods Biomed. Eng. 28 (2012), 317-345. Zbl 1243.92017, MR 2910281, 10.1002/cnm.1445
Reference: [39] Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics.Comput. Methods Appl. Mech. Eng. 193 (2004), 3523-3540. Zbl 1068.74076, MR 2075053, 10.1016/j.cma.2003.12.041
Reference: [40] Hansbo, P., Hermansson, J., Svedberg, T.: Nitsche's method combined with space-time finite elements for ALE fluid-structure interaction problems.Comput. Methods Appl. Mech. Eng. 193 (2004), 4195-4206. Zbl 1175.74082, MR 2087009, 10.1016/j.cma.2003.09.029
Reference: [41] Hirt, C. W., Amsden, A. A., Cook, J. L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds.J. Comput. Phys. 14 (1974), 227-253. Zbl 0292.76018, 10.1016/0021-9991(74)90051-5
Reference: [42] Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods.SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics, Philadelphia (1988). Zbl 0685.73002, MR 0961258, 10.1137/1.9781611970845
Reference: [43] LifeV: Available at https://bitbucket.org/lifev-dev/lifev-release/wiki/Home..
Reference: [44] Liu, Y., Liu, W. K.: Rheology of red blood cell aggregation by computer simulation.J. Comput. Phys. 220 (2006), 139-154. Zbl 1102.92010, MR 2281624, 10.1016/j.jcp.2006.05.010
Reference: [45] Marom, G.: Numerical methods for fluid-structure interaction models of aortic valves.Arch. Comput. Methods Eng. 22 (2015), 595-620. Zbl 1348.74099, MR 3402525, 10.1007/s11831-014-9133-9
Reference: [46] Massing, A., Larson, M. G., Logg, A., Rognes, M. E.: A Nitsche-based cut finite element method for a fluid-structure interaction problem.Commun. Appl. Math. Comput. Sci. 10 (2015), 97-120. Zbl 1326.74122, MR 3402347, 10.2140/camcos.2015.10.97
Reference: [47] Mittal, R., Iaccarino, G.: Immersed boundary methods.Annu. Rev. Fluid Mech. 37 (2005), 239-261. Zbl 1117.76049, MR 2115343, 10.1146/annurev.fluid.37.061903.175743
Reference: [48] Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing.Int. J. Numer. Methods Eng. 46 (1999), 131-150. Zbl 0955.74066, MR 3925464, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Reference: [49] Oñate, E., Celigueta, M. A., Idelsohn, S. R., Salazar, F., Suárez, B.: Possibilities of the particle finite element method for fluid-soil-structure interaction problems.Comput. Mech. 48 (2011), 307-318. Zbl 1398.76120, MR 2833086, 10.1007/s00466-011-0617-2
Reference: [50] Patankar, N. A., Singh, P., Joseph, D. D., Glowinski, R., Pan, T.-W.: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows.Int. J. Multiphase Flow 26 (2000), 1509-1524. Zbl 1137.76712, MR 2436653, 10.1016/S0301-9322(99)00100-7
Reference: [51] Peskin, C. S.: Flow patterns around heart valves: A numerical method.J. Comput. Phys. 10 (1972), 252-271. Zbl 0244.92002, MR 0475298, 10.1016/0021-9991(72)90065-4
Reference: [52] Peskin, C. S.: The immersed boundary method.Acta Numerica 11 (2002), 479-517. Zbl 1123.74309, MR 2009378, 10.1017/S0962492902000077
Reference: [53] Rannacher, R., Richter, T.: An adaptive finite element method for fluid-structure interaction problems based on a fully Eulerian formulation.Fluid Structure Interaction II. Modelling, Simulation, Optimization Lecture Notes in Computational Science and Engineering 73. Springer, Berlin (2010), 159-191. Zbl 1214.76005, MR 3050403, 10.1007/978-3-642-14206-2_7
Reference: [54] Rega, G.: Nonlinear vibrations of suspended cables I. Modeling and analysis.Appl. Mech. Rev. 57 (2004), 443-478. 10.1115/1.1777224
Reference: [55] Richter, T.: A fully Eulerian formulation for fluid-structure-interaction problems.J. Comput. Phys. 233 (2013), 227-240. MR 3000928, 10.1016/j.jcp.2012.08.047
Reference: [56] Richter, T.: Fluid-Structure Interactions: Models, Analysis and Finite Elements.Lecture Notes in Computational Science and Engineering 118. Springer, Cham (2017). Zbl 1374.76001, MR 3709400, 10.1007/978-3-319-63970-3
Reference: [57] Richter, T., Wick, T.: Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates.Comput. Methods Appl. Mech. Eng. 199 (2010), 2633-2642. Zbl 1231.74436, MR 2728815, 10.1016/j.cma.2010.04.016
Reference: [58] Saksono, P. H., Dettmer, W. G., Perić, D.: An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction.Int. J. Numer. Methods Eng. 71 (2007), 1009-1050. Zbl 1194.76140, MR 2348756, 10.1002/nme.1971
Reference: [59] Vergara, C., Zonca, S.: Extended finite elements method for fluid-structure interaction with an immersed thick non-linear structure.Mathematical and Numerical Modeling of the Cardiovascular System and Applications SEMA SIMAI Springer Series 16. Springer, Cham (2018), 209-243. MR 3887547, 10.1007/978-3-319-96649-6_9
Reference: [60] Wriggers, P., Zavarise, G.: Computational contact mechanics.Encyclopedia of Computational Mechanics II. Solids and Structures John Wiley & Sons, Chichester (2004), Article ID 6. 10.1002/0470091355.ecm033
Reference: [61] Xu, D., Kaliviotis, E., Munjiza, A., Avital, E., Ji, C., Williams, J.: Large scale simulation of red blood cell aggregation in shear flows.J. Biomech. 46 (2013), 1810-1817. 10.1016/j.jbiomech.2013.05.010
Reference: [62] Zhang, H., Liu, L., Dong, M., Sun, H.: Analysis of wind-induced vibration of fluid-structure interaction system for isolated aqueduct bridge.Eng. Struct. 46 (2013), 28-37. 10.1016/j.engstruct.2012.07.019
Reference: [63] Zonca, S.: Unfitted Numerical Methods for Fluid-Structure Interaction Arising Between an Incompressible Fluid and an Immersed Thick Structure: PhD. Thesis.Politecnico di Milano, Milano (2018).
Reference: [64] Zonca, S., Vergara, C., Formaggia, L.: An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach.SIAM J. Sci. Comput. 40 (2018), B59--B84. Zbl 1395.74087, MR 3745000, 10.1137/16M1097602
.

Files

Files Size Format View
AplMat_66-2021-2_2.pdf 3.105Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo