Previous |  Up |  Next

Article

Title: A spatially sixth-order hybrid $L1$-CCD method for solving time fractional Schrödinger equations (English)
Author: Zhang, Chun-Hua
Author: Jin, Jun-Wei
Author: Sun, Hai-Wei
Author: Sheng, Qin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 2
Year: 2021
Pages: 213-232
Summary lang: English
.
Category: math
.
Summary: We consider highly accurate schemes for nonlinear time fractional Schrödinger equations (NTFSEs). While an $L1$ strategy is employed for approximating the Caputo fractional derivative in the temporal direction, compact CCD finite difference approaches are incorporated in the space. A highly effective hybrid $L1$-CCD method is implemented successfully. The accuracy of this linearized scheme is order six in space, and order $2-\gamma $ in time, where $0<\gamma <1$ is the order of the Caputo fractional derivative involved. It is proved rigorously that the hybrid numerical method accomplished is unconditionally stable in the Fourier sense. Numerical experiments are carried out with typical testing problems to validate the effectiveness of the new algorithms. (English)
Keyword: nonlinear time fractional Schrödinger equations
Keyword: $L1$ formula
Keyword: hybrid compact difference method
Keyword: linearization
Keyword: unconditional stability
MSC: 65M06
MSC: 65M20
MSC: 65M60
idZBL: 07332696
idMR: MR4226457
DOI: 10.21136/AM.2020.0339-19
.
Date available: 2021-03-05T10:36:21Z
Last updated: 2023-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148721
.
Reference: [1] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus: Models and Numerical Methods.Series on Complexity, Nonlinearity and Chaos 5. World Scientific, Hackensack (2012). Zbl 1248.26011, MR 2894576, 10.1142/8180
Reference: [2] Benson, D. A., Schumer, R., Meerschaert, M. M., Wheatcraft, S. W.: Fractional dispersion, Lévy motion, and the MADE tracer tests.Transp. Porous Media 42 (2001), 211-240. MR 1948593, 10.1023/A:1006733002131
Reference: [3] Bhrawy, A. H., Doha, E. H., Ezz-Eldien, S. S., Gorder, R. A. Van: A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems.Eur. Phys. J. Plus 129 (2014), Article ID 260, 21 pages. MR 2930392, 10.1140/epjp/i2014-14260-6
Reference: [4] Bratsos, A. G.: A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation.Korean J. Comput. Appl. Math. 8 (2001), 459-467. Zbl 1015.65042, MR 1848910, 10.1007/BF02941979
Reference: [5] Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation.J. Comput. Phys. 148 (1999), 397-415. Zbl 0923.65059, MR 1669707, 10.1006/jcph.1998.6120
Reference: [6] Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schemes for nonlinear timefractional Schrödinger equations.Appl. Math. Lett. 84 (2018), 160-167. Zbl 06892656, MR 3808513, 10.1016/j.aml.2018.05.007
Reference: [7] Chen, B., He, D., Pan, K.: A linearized high-order combined compact difference scheme for multi-dimensional coupled Burgers' equations.Numer. Math., Theory Methods Appl. 11 (2018), 299-320. Zbl 1424.65124, MR 3849456, 10.4208/nmtma.OA-2017-0090
Reference: [8] Chen, B., He, D., Pan, K.: A CCD-ADI method for two-dimensional linear and nonlinear hyperbolic telegraph equations with variable coefficients.Int. J. Comput. Math. 96 (2019), 992-1004. MR 3911287, 10.1080/00207160.2018.1478415
Reference: [9] Chu, P. C., Fan, C.: A three-point combined compact difference scheme.J. Comput. Phys. 140 (1998), 370-399. Zbl 0923.65071, MR 1616146, 10.1006/jcph.1998.5899
Reference: [10] Cui, M.: Compact finite difference method for the fractional diffusion equation.J. Comput. Phys. 228 (2009), 7792-7804. Zbl 1179.65107, MR 2561843, 10.1016/j.jcp.2009.07.021
Reference: [11] Dehghan, M., Taleei, A.: A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients.Comput. Phys. Commun. 181 (2010), 43-51. Zbl 1206.65207, MR 2575184, 10.1016/j.cpc.2009.08.015
Reference: [12] Feynman, R. P., Hibbs, A. R.: Quantum Mechanics and Path Integrals.Dover Publications, New York (2010). Zbl 1220.81156, MR 2797644
Reference: [13] Gao, G.-H., Sun, H.-W.: Three-point combined compact alternating direction implicit difference schemes for two-dimensional time-fractional advection-diffusion equations.Commun. Comput. Phys. 17 (2015), 487-509. Zbl 1388.65052, MR 3371511, 10.4208/cicp.180314.010914a
Reference: [14] Gao, G.-H., Sun, H.-W.: Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions.J. Comput. Phys. 298 (2015), 520-538. Zbl 1349.65294, MR 3374563, 10.1016/j.jcp.2015.05.052
Reference: [15] Gao, G.-H., Sun, H.-W., Sun, Z.-Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence.J. Comput. Phys. 280 (2015), 510-528. Zbl 1349.65295, MR 3273149, 10.1016/j.jcp.2014.09.033
Reference: [16] Gao, G.-H., Sun, Z.-Z.: A compact finite difference scheme for the fractional sub-diffusion equations.J. Comput. Phys. 230 (2011), 586-595. Zbl 1211.65112, MR 2745445, 10.1016/j.jcp.2010.10.007
Reference: [17] Gao, G.-H., Sun, Z.-Z., Zhang, H.-W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications.J. Comput. Phys. 259 (2014), 33-50. Zbl 1349.65088, MR 3148558, 10.1016/j.jcp.2013.11.017
Reference: [18] Golmankhaneh, A. K., Baleanu, D.: Calculus on fractals.Fractional Dynamics De Gruyter, Berlin (2015), 307-332. Zbl 1333.00024, MR 3468175, 10.1515/9783110472097-019
Reference: [19] He, D.: An unconditionally stable spatial sixth-order CCD-ADI method for the twodimensional linear telegraph equation.Numer. Algorithms 72 (2016), 1103-1117. Zbl 1350.65088, MR 3529835, 10.1007/s11075-015-0082-7
Reference: [20] He, D., Pan, K.: A fifth-order combined compact difference scheme for the Stokes flow on polar geometries.East Asian J. Appl. Math. 7 (2017), 714-727. Zbl 1426.76471, MR 3766403, 10.4208/eajam.200816.300517a
Reference: [21] He, D., Pan, K.: An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schrödinger equations with variable coefficients in two and three dimensions.Comput. Math. Appl. 73 (2017), 2360-2374. Zbl 1373.65056, MR 3648018, 10.1016/j.camwa.2017.04.009
Reference: [22] Jones, T. N., Sheng, Q.: Asymptotic stability of a dual-scale compact method for approximating highly oscillatory Helmholtz solutions.J. Comput. Phys. 392 (2019), 403-418. MR 3948727, 10.1016/j.jcp.2019.04.046
Reference: [23] Khan, N. A., Jamil, M., Ara, A.: Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method.Int. Sch. Res. Not. 2012 (2012), Article ID 197068, 11 pages. 10.5402/2012/197068
Reference: [24] Klages, R., Radons, G., (eds.), I. M. Sokolov: Anomalous Transport: Foundations and Applications.Wiley, Weinheim (2008). 10.1002/9783527622979
Reference: [25] Laskin, N.: Fractional quantum mechanics and Lévy path integrals.Phys. Lett., A 268 (2000), 298-305. Zbl 0948.81595, MR 1755089, 10.1016/S0375-9601(00)00201-2
Reference: [26] Lee, S. T., Liu, J., Sun, H.-W.: Combined compact difference scheme for linear second-order partial differential equations with mixed derivative.J. Comput. Appl. Math. 264 (2014), 23-37. Zbl 1294.65098, MR 3164100, 10.1016/j.cam.2014.01.004
Reference: [27] Li, L. Z., Sun, H.-W., Tam, S.-C.: A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations.Comput. Phys. Commun. 187 (2015), 38-48. Zbl 1348.35238, MR 3283134, 10.1016/j.cpc.2014.10.008
Reference: [28] Li, D., Wang, J., Zhang, J.: Unconditionally convergent $L1$-Galerkin FEMs for nonlinear time-fractional Schrödinger equations.SIAM. J. Sci. Comput. 39 (2017), A3067--A3088. Zbl 1379.65079, MR 3738320, 10.1137/16M1105700
Reference: [29] Liao, H.-L., Shi, H.-S., Zhao, Y.: Numerical study of fourth-order linearized compact schemes for generalized NLS equations.Comput. Phys. Commun. 185 (2014), 2240-2249. Zbl 1344.35137, MR 3211950, 10.1016/j.cpc.2014.05.002
Reference: [30] Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics.Eng. Anal. Bound. Elem. 37 (2013), 475-485. Zbl 1352.65397, MR 3018826, 10.1016/j.enganabound.2012.12.002
Reference: [31] Murio, D. A.: Implicit finite difference approximation for time fractional diffusion equations.Comput. Math. Appl. 56 (2008), 1138-1145. Zbl 1155.65372, MR 2437884, 10.1016/j.camwa.2008.02.015
Reference: [32] Naber, M.: Time fractional Schrödinger equation.J. Math. Phys. 45 (2004), 3339-3352. Zbl 1071.81035, MR 2077514, 10.1063/1.1769611
Reference: [33] Rida, S. Z., El-Sherbiny, H. M., Arafa, A. A. M.: On the solution of the fractional nonlinear Schrödinger equation.Phys. Lett., A 372 (2008), 553-558. Zbl 1217.81068, MR 2378723, 10.1016/j.physleta.2007.06.071
Reference: [34] Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance.Phys. A 284 (2000), 376-384. MR 1773804, 10.1016/S0378-4371(00)00255-7
Reference: [35] Shivanian, E., Jafarabadi, A.: Error and stability analysis of numerical solution for the time fractional nonlinear Schrödinger equation on scattered data of general-shaped domains.Numer. Methods Partial Differ. Equations 33 (2017), 1043-1069. Zbl 1379.65082, MR 3652177, 10.1002/num.22126
Reference: [36] Sun, H.-W., Li, L. Z.: A CCD-ADI method for unsteady convection-diffusion equations.Comput. Phys. Commun. 185 (2014), 790-797. Zbl 1360.35193, MR 3161142, 10.1016/j.cpc.2013.11.009
Reference: [37] Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system.Appl. Numer. Math. 56 (2006), 193-209. Zbl 1094.65083, MR 2200938, 10.1016/j.apnum.2005.03.003
Reference: [38] Wang, Y.-M., Ren, L.: Efficient compact finite difference methods for a class of timefractional convection-reaction-diffusion equations with variable coefficients.Int. J. Comput. Math. 96 (2019), 264-297. MR 3893479, 10.1080/00207160.2018.1437262
Reference: [39] Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation.J. Comput. Phys. 277 (2014), 1-15. Zbl 1349.65348, MR 3254221, 10.1016/j.jcp.2014.08.012
Reference: [40] Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation.Finite Elem. Anal. Des. 59 (2012), 28-34. MR 2949417, 10.1016/j.finel.2012.03.008
Reference: [41] Xu, Y., Zhang, L.: Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation.Comput. Phys. Commun. 183 (2012), 1082-1093. Zbl 1277.65073, MR 2888993, 10.1016/j.cpc.2012.01.006
Reference: [42] Zhu, L., Sheng, Q.: A note on the adaptive numerical solution of a Riemann-Liouville space-fractional Kawarada problem.J. Comput. Appl. Math. 374 (2020), Article ID 112714, 14 pages. Zbl 1435.65136, MR 4066721, 10.1016/j.cam.2020.112714
.

Files

Files Size Format View
AplMat_66-2021-2_3.pdf 406.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo