Title:
|
When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base (English) |
Author:
|
Lafuente-Rodriguez, Ramiro |
Author:
|
McGovern, Warren Wm. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
146 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
69-89 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and $T_1$, but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the $l$-group in question is weakly complemented. A slightly weaker topological property than having a base of clopen subsets is having a clopen $\pi $-base. Recall that a $\pi $-base is a collection of nonempty open subsets such that every nonempty open subset of the space contains a member of the $\pi $-base; obviously, a base is a $\pi $-base. In what follows we classify when the inverse topology on the space of prime subgroups has a clopen $\pi $-base. (English) |
Keyword:
|
lattice-ordered group |
Keyword:
|
minimal prime subgroup |
Keyword:
|
maximal $d$-subgroup |
Keyword:
|
archimedean $l$-group |
Keyword:
|
$\bold {W}$ |
MSC:
|
06F15 |
MSC:
|
06F20 |
idZBL:
|
07332743 |
idMR:
|
MR4227312 |
DOI:
|
10.21136/MB.2020.0114-18 |
. |
Date available:
|
2021-03-12T16:20:08Z |
Last updated:
|
2021-04-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148748 |
. |
Reference:
|
[1] Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. Rezai: On $z^0$-ideals in $C(X)$.Fund. Math. 160 (1999), 15-25. Zbl 0991.54014, MR 1694400, 10.4064/fm_1999_160_1_1_15_25 |
Reference:
|
[2] Bhattacharjee, P., McGovern, W. Wm.: When $ Min(A)^{-1}$ is Hausdorff.Commun. Algebra 41 (2013), 99-108. Zbl 1264.13004, MR 3010524, 10.1080/00927872.2011.617228 |
Reference:
|
[3] Bhattacharjee, P., McGovern, W. Wm.: Lamron $\ell$-groups.Quaest. Math. 41 (2018), 81-98. Zbl 07117253, MR 3761490, 10.2989/16073606.2017.1372529 |
Reference:
|
[4] Bhattacharjee, P., McGovern, W. Wm.: Maximal $d$-subgroups and ultrafilters.Rend. Circ. Mat. Palermo, Series 2 67 (2018), 421-440. Zbl 06992778, MR 3911999, 10.1007/s12215-017-0323-9 |
Reference:
|
[5] Conrad, P.: Lattice Ordered Groups.Tulane Lecture Notes. Tulane University, New Orleans (1970). Zbl 0258.06011 |
Reference:
|
[6] Conrad, P., Martínez, J.: Complemented lattice-ordered groups.Indag. Math., New Ser. 1 (1990), 281-297. Zbl 0735.06006, MR 1075880, 10.1016/0019-3577(90)90019-J |
Reference:
|
[7] Darnel, M. R.: Theory of Lattice-Ordered Groups.Pure and Applied Mathematics 187. Marcel Dekker, New York (1995). Zbl 0810.06016, MR 1304052 |
Reference:
|
[8] Ghashghaei, E., McGovern, W. Wm.: Fusible rings.Commun. Algebra 45 (2017), 1151-1165. Zbl 1386.16021, MR 3573366, 10.1080/00927872.2016.1206347 |
Reference:
|
[9] Huijsmans, C. B., Pagter, B. de: On $z$-ideals and $d$-ideals in Riesz spaces. II.Indag. Math. 42 (1980), 391-408. Zbl 0451.46003, MR 0597997, 10.1016/1385-7258(80)90040-2 |
Reference:
|
[10] Huijsmans, C. B., Pagter, B. de: Maximal $d$-ideals in a Riesz space.Can. J. Math. 35 (1983), 1010-1029. Zbl 0505.46004, MR 0738841, 10.4153/CJM-1983-056-6 |
Reference:
|
[11] Kist, J.: Compact spaces of minimal prime ideals.Math. Z. 111 (1969), 151-158. Zbl 0177.06404, MR 0245566, 10.1007/BF01111196 |
Reference:
|
[12] Knox, M. L., McGovern, W. Wm.: Feebly projectable $\ell$-groups.Algebra Univers. 62 (2009), 91-112. Zbl 1192.06014, MR 2645226, 10.1007/s00012-010-0041-z |
Reference:
|
[13] Levy, R.: Almost-$P$-spaces.Can. J. Math. 29 (1977), 284-288. Zbl 0342.54032, MR 0464203, 10.4153/CJM-1977-030-7 |
Reference:
|
[14] Martínez, J., Zenk, E. R.: When an algebraic frame is regular.Algebra Univers. 50 (2003), 231-257. Zbl 1092.06011, MR 2037528, 10.1007/s00012-003-1841-1 |
Reference:
|
[15] Martínez, J., Zenk, E. R.: Epicompletion in frames with skeletal maps. I.: Compact regular frames.Appl. Categ. Struct. 16 (2008), 521-533. Zbl 1156.06004, MR 2421540, 10.1007/s10485-007-9110-7 |
Reference:
|
[16] McGovern, W. Wm.: Neat rings.J. Pure Appl. Algebra 205 (2006), 243-265. Zbl 1095.13025, MR 2203615, 10.1016/j.jpaa.2005.07.012 |
Reference:
|
[17] Speed, T. P.: Spaces of ideals of distributive lattices. II: Minimal prime ideals.J. Aust. Math. Soc. 18 (1974), 54-72. Zbl 0294.06009, MR 0354476, 10.1017/S144678870001911X |
. |