Previous |  Up |  Next

Article

Title: Prime ideal factorization in a number field via Newton polygons (English)
Author: El Fadil, Lhoussain
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 529-543
Summary lang: English
.
Category: math
.
Summary: Let $K$ be a number field defined by an irreducible polynomial $F(X)\in \mathbb Z[X]$ and $\mathbb Z_K$ its ring of integers. For every prime integer $p$, we give sufficient and necessary conditions on $F(X)$ that guarantee the existence of exactly $r$ prime ideals of $\mathbb Z_K$ lying above $p$, where $\bar {F}(X)$ factors into powers of $r$ monic irreducible polynomials in $\mathbb F_p[X]$. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly $r$ prime ideals of $\mathbb Z_K$ lying above $p$. We further specify for every prime ideal of $\mathbb Z_K$ lying above $p$, the ramification index, the residue degree, and a $p$-generator. (English)
Keyword: prime factorization
Keyword: valuation
Keyword: $\phi $-expansion
Keyword: Newton polygon
MSC: 11S05
MSC: 11Y05
MSC: 11Y40
idZBL: 07361083
idMR: MR4263184
DOI: 10.21136/CMJ.2021.0516-19
.
Date available: 2021-05-20T13:46:24Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148919
.
Reference: [1] Bauer, M.: Über die ausserwesentliche Diskriminantenteiler einer Gattung.Math. Ann. 64 (1907), 573-576 German \99999JFM99999 38.0249.02. MR 1511458, 10.1007/BF01450065
Reference: [2] Bauer, M.: Zur allgemeinen Theorie der algebraischen Grösen.J. Reine Angew. Math. 132 (1907), 21-32 German. MR 1580710, 10.1515/crll.1907.132.21
Reference: [3] Cohen, S. D., Movahhedi, A., Salinier, A.: Factorization over local fields and the irreducibility of generalized difference polynomials.Mathematika 47 (2000), 173-196. Zbl 1018.12001, MR 1924496, 10.1112/S0025579300015801
Reference: [4] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen.Abh. Math. Klasse Königlichen Gesellsch. Wiss. Göttingen 23 (1878), 3-37 German.
Reference: [5] Fadil, L. El, Montes, J., Nart, E.: Newton polygons and $p$-integral bases of quartic number fields.J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. Zbl 1297.11134, MR 2959422, 10.1142/S0219498812500739
Reference: [6] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory.Trans. Am. Math. Soc. 364 (2012), 361-416. Zbl 1252.11091, MR 2833586, 10.1090/S0002-9947-2011-05442-5
Reference: [7] Hensel, K.: Untersuchung der Fundamentalgleichung einer Gattung für eine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante.J. Reine Angew. Math. 113 (1894), 61-83 German \99999JFM99999 25.0135.03. MR 1580345, 10.1515/crll.1894.113.61
Reference: [8] Khanduja, S. K., Kumar, M.: Prolongations of valuations to finite extensions.Manuscr. Math. 131 (2010), 323-334. Zbl 1216.12007, MR 2592083, 10.1007/s00229-009-0320-1
Reference: [9] MacLane, S.: A construction for absolute values in polynomial rings.Trans. Am. Math. Soc. 40 (1936), 363-395 \99999JFM99999 62.1106.02. MR 1501879, 10.1090/S0002-9947-1936-1501879-8
.

Files

Files Size Format View
CzechMathJ_71-2021-2_14.pdf 296.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo