Previous |  Up |  Next

Article

Keywords:
weighted Riemannian manifold; conformal Killing graph; $f$-mean curvature; Bakry--Émery--Ricci tensor; strong $f$-stability
Summary:
In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold $\overline{M}_f^{ n+1}$ endowed with a weight function $f$ and having a closed conformal Killing vector field $V$ with conformal factor $\psi_V$, that is, graphs constructed through the flow generated by $V$ and which are defined over an integral leaf of the foliation $V^{\perp}$ orthogonal to $V$. For such graphs, we establish some rigidity results under appropriate constraints on the $f$-mean curvature. Afterwards, we obtain some stability results for $f$-minimal conformal Killing graphs of $ \overline{M}_f^{ n+1}$ according to the behavior of $ \psi_V$. Finally, related to conformal Killing graphs immersed in $\overline{M}_f^{n+1}$ with constant $f$-mean curvature, we study the strong stability.
References:
[1] Aledo J. A., Rubio R. M.: Stable minimal surfaces in Riemannian warped products. J. Geom. Anal. 27 (2017), no. 1, 65–78. DOI 10.1007/s12220-015-9673-8 | MR 3606544
[2] Alexandrov A. D.: Uniqueness theorems for surfaces in the large I. Vestnik Leiningrad Univ. 11 (1956), no. 19, 5–17 (Russian). MR 0086338
[3] Alexandrov A. D.: A characteristic property of spheres. Ann. Mat. Pura Appl. 58 (1962), no. 4, 303–315. DOI 10.1007/BF02413056 | MR 0143162
[4] Alías L. J., Dajczer M., Ripoll J. R.: A Bernstein-type theorem for Riemannian manifolds with a Killing field. Ann. Global Anal. Geom. 31 (2007), no. 4, 363–373. DOI 10.1007/s10455-006-9045-5 | MR 2325221
[5] Alías L. J., de Lira J. H. S., Malacarne J. M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces. J. Inst. Math. Jussieu 5 (2006), no. 4, 527–562. DOI 10.1017/S1474748006000077 | MR 2261223 | Zbl 1118.53038
[6] Bakry D., Émery M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pages 177–206 (French). MR 0889476
[7] Barbosa J. L. M., do Carmo M., Eschenburg J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), no. 1, 123–138. DOI 10.1007/BF01161634 | MR 0917854
[8] Batista M., Cavalcante M. P., Pyo J.: Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds. J. Math. Anal. Appl. 419 (2014), no. 1, 617–626. DOI 10.1016/j.jmaa.2014.04.074 | MR 3217170
[9] Bernstein S.: Sur les surfaces définies au moyen de leur courboure moyenne ou totale. Ann. Sci. École Norm. Sup. 27 (1910), no. 3, 233–256 (French). DOI 10.24033/asens.621 | MR 1509123
[10] Caminha A.: The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. DOI 10.1007/s00574-011-0015-6 | MR 2833803 | Zbl 1242.53068
[11] Caminha A., de Lima H. F.: Complete vertical graphs with constant mean curvature in semi-Riemannian warped products. Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91–105. DOI 10.36045/bbms/1235574194 | MR 2498961
[12] Cañete A., Rosales C.: Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities. Cal. Var. Partial Differential Equations 51 (2014), no. 3–4, 887–913. DOI 10.1007/s00526-013-0699-0 | MR 3268875
[13] Castro K., Rosales C.: Free boundary stable hypersurfaces in manifolds with density and rigidity results. J. Geom. Phys. 79 (2014), 14–28. DOI 10.1016/j.geomphys.2014.01.013 | MR 3176286
[14] Cavalcante M. P., de Lima H. F., Santos M. S.: On Bernstein-type properties of complete hypersurfaces in weighted warped products. Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 309–322. DOI 10.1007/s10231-014-0464-9 | MR 3476675
[15] Dajczer M., de Lira J. H.: Conformal Killing graphs with prescribed mean curvature. J. Geom. Anal. 22 (2012), no. 3, 780–799. DOI 10.1007/s12220-011-9214-z | MR 2927678
[16] Dajczer M., Hinojosa P., de Lira J. H.: Killing graphs with prescribed mean curvature. Calc. Var. Partial Differential Equations 33 (2008), no. 2, 231–248. DOI 10.1007/s00526-008-0163-8 | MR 2413108 | Zbl 1152.53046
[17] de Lima H. F., de Lima J. R., Velásquez M. A. L.: On the nullity of conformal Killing graphs in foliated Riemannian spaces. Aequationes Math. 87 (2014), no. 3, 285–299. MR 3266117
[18] de Lima H. F., de Lima J. R., Velásquez M. A. L.: Entire conformal Killing graphs in foliated Riemannian spaces. J. Geom. Anal. 25 (2015), no. 1, 171–188. DOI 10.1007/s12220-013-9418-5 | MR 3299274
[19] de Lima H. F., Oliveira A. M., Velásquez M. A. L.: On the uniqueness of complete two-sided hypersurfaces immersed in a class of weighted warped products. J. Geom. Anal. 27 (2017), no. 3, 2278–2301. DOI 10.1007/s12220-017-9761-z | MR 3667431
[20] Fang F., Li X.-D., Zhang Z.: Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Émery Ricci curvature. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563–573. DOI 10.5802/aif.2440 | MR 2521428
[21] Hieu D. T., Nam T. L.: Bernstein type theorem for entire weighted minimal graphs in $\mathbb{G}^n\times\mathbb{R}$. J. Geom. Phys. 81 (2014), 87–91. DOI 10.1016/j.geomphys.2014.03.011 | MR 3194217
[22] Impera D., de Lira J. H., Pigola S., Setti A. G.: Height estimates for Killing graphs. J. Geom. Anal. 28 (2018), no. 3, 2857–2885. DOI 10.1007/s12220-017-9938-5 | MR 3833821
[23] Impera D., Rimoldi M.: Stability properties and topology at infinity of $f$-minimal hypersurfaces. Geom. Dedicata 178 (2015), 21–47. DOI 10.1007/s10711-014-9999-6 | MR 3397480
[24] Jellett J. J.: Sur la surface dont la courbure moyenne est constante. J. Math. Pures Appl. 18 (1853), 163–167 (French).
[25] Lichnerowicz A.: Variétés Riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650–A653 (French). MR 0268812
[26] Lichnerowicz A.: Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative. J. Differential Geometry 6 (1971/72), 47–94 (French). MR 0300228
[27] Liebmann H.: Eine neue Eigenschaft der Kugel. Nachr. Kg. Ges. Wiss. Götingen, Math. Phys. Kl. (1899), 44–55 (German).
[28] McGonagle M., Ross J.: The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space. Geom. Dedicata 178 (2015), 277–296. DOI 10.1007/s10711-015-0057-9 | MR 3397495
[29] Montiel S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48 (1999), no. 2, 711–748. DOI 10.1512/iumj.1999.48.1562 | MR 1722814
[30] O'Neill B.: Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023
[31] Pan T. K.: Conformal vector fields in compact Riemannian manifolds. Proc. Amer. Math. Soc. 14 (1963), 653–657. DOI 10.1090/S0002-9939-1963-0157324-2 | MR 0157324
[32] Rosales C., Ca nete A., Bayle V., Morgan F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differential Equations 31 (2008), no. 1, 27–46. DOI 10.1007/s00526-007-0104-y | MR 2342613
[33] Wei G., Wylie W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Differential Geom. 83 (2009), no. 2, 377–405. MR 2577473
[34] Yau S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. DOI 10.1512/iumj.1976.25.25051 | MR 0417452
Partner of
EuDML logo