Previous |  Up |  Next

Article

Title: Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability (English)
Author: Velásquez, Marco L. A.
Author: Ramalho, André F. A.
Author: de Lima, Henrique F.
Author: Santos, Márcio S.
Author: Oliveira, Arlandson M. S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 2
Year: 2021
Pages: 175-200
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold $\overline{M}_f^{ n+1}$ endowed with a weight function $f$ and having a closed conformal Killing vector field $V$ with conformal factor $\psi_V$, that is, graphs constructed through the flow generated by $V$ and which are defined over an integral leaf of the foliation $V^{\perp}$ orthogonal to $V$. For such graphs, we establish some rigidity results under appropriate constraints on the $f$-mean curvature. Afterwards, we obtain some stability results for $f$-minimal conformal Killing graphs of $ \overline{M}_f^{ n+1}$ according to the behavior of $ \psi_V$. Finally, related to conformal Killing graphs immersed in $\overline{M}_f^{n+1}$ with constant $f$-mean curvature, we study the strong stability. (English)
Keyword: weighted Riemannian manifold
Keyword: conformal Killing graph
Keyword: $f$-mean curvature
Keyword: Bakry--Émery--Ricci tensor
Keyword: strong $f$-stability
MSC: 53C42
idZBL: Zbl 07396218
idMR: MR4303577
DOI: 10.14712/1213-7243.2021.017
.
Date available: 2021-07-28T08:36:18Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/149011
.
Reference: [1] Aledo J. A., Rubio R. M.: Stable minimal surfaces in Riemannian warped products.J. Geom. Anal. 27 (2017), no. 1, 65–78. MR 3606544, 10.1007/s12220-015-9673-8
Reference: [2] Alexandrov A. D.: Uniqueness theorems for surfaces in the large I.Vestnik Leiningrad Univ. 11 (1956), no. 19, 5–17 (Russian). MR 0086338
Reference: [3] Alexandrov A. D.: A characteristic property of spheres.Ann. Mat. Pura Appl. 58 (1962), no. 4, 303–315. MR 0143162, 10.1007/BF02413056
Reference: [4] Alías L. J., Dajczer M., Ripoll J. R.: A Bernstein-type theorem for Riemannian manifolds with a Killing field.Ann. Global Anal. Geom. 31 (2007), no. 4, 363–373. MR 2325221, 10.1007/s10455-006-9045-5
Reference: [5] Alías L. J., de Lira J. H. S., Malacarne J. M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces.J. Inst. Math. Jussieu 5 (2006), no. 4, 527–562. Zbl 1118.53038, MR 2261223, 10.1017/S1474748006000077
Reference: [6] Bakry D., Émery M.: Diffusions hypercontractives.Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pages 177–206 (French). MR 0889476
Reference: [7] Barbosa J. L. M., do Carmo M., Eschenburg J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds.Math. Z. 197 (1988), no. 1, 123–138. MR 0917854, 10.1007/BF01161634
Reference: [8] Batista M., Cavalcante M. P., Pyo J.: Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds.J. Math. Anal. Appl. 419 (2014), no. 1, 617–626. MR 3217170, 10.1016/j.jmaa.2014.04.074
Reference: [9] Bernstein S.: Sur les surfaces définies au moyen de leur courboure moyenne ou totale.Ann. Sci. École Norm. Sup. 27 (1910), no. 3, 233–256 (French). MR 1509123, 10.24033/asens.621
Reference: [10] Caminha A.: The geometry of closed conformal vector fields on Riemannian spaces.Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. Zbl 1242.53068, MR 2833803, 10.1007/s00574-011-0015-6
Reference: [11] Caminha A., de Lima H. F.: Complete vertical graphs with constant mean curvature in semi-Riemannian warped products.Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91–105. MR 2498961, 10.36045/bbms/1235574194
Reference: [12] Cañete A., Rosales C.: Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities.Cal. Var. Partial Differential Equations 51 (2014), no. 3–4, 887–913. MR 3268875, 10.1007/s00526-013-0699-0
Reference: [13] Castro K., Rosales C.: Free boundary stable hypersurfaces in manifolds with density and rigidity results.J. Geom. Phys. 79 (2014), 14–28. MR 3176286, 10.1016/j.geomphys.2014.01.013
Reference: [14] Cavalcante M. P., de Lima H. F., Santos M. S.: On Bernstein-type properties of complete hypersurfaces in weighted warped products.Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 309–322. MR 3476675, 10.1007/s10231-014-0464-9
Reference: [15] Dajczer M., de Lira J. H.: Conformal Killing graphs with prescribed mean curvature.J. Geom. Anal. 22 (2012), no. 3, 780–799. MR 2927678, 10.1007/s12220-011-9214-z
Reference: [16] Dajczer M., Hinojosa P., de Lira J. H.: Killing graphs with prescribed mean curvature.Calc. Var. Partial Differential Equations 33 (2008), no. 2, 231–248. Zbl 1152.53046, MR 2413108, 10.1007/s00526-008-0163-8
Reference: [17] de Lima H. F., de Lima J. R., Velásquez M. A. L.: On the nullity of conformal Killing graphs in foliated Riemannian spaces.Aequationes Math. 87 (2014), no. 3, 285–299. MR 3266117
Reference: [18] de Lima H. F., de Lima J. R., Velásquez M. A. L.: Entire conformal Killing graphs in foliated Riemannian spaces.J. Geom. Anal. 25 (2015), no. 1, 171–188. MR 3299274, 10.1007/s12220-013-9418-5
Reference: [19] de Lima H. F., Oliveira A. M., Velásquez M. A. L.: On the uniqueness of complete two-sided hypersurfaces immersed in a class of weighted warped products.J. Geom. Anal. 27 (2017), no. 3, 2278–2301. MR 3667431, 10.1007/s12220-017-9761-z
Reference: [20] Fang F., Li X.-D., Zhang Z.: Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Émery Ricci curvature.Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563–573. MR 2521428, 10.5802/aif.2440
Reference: [21] Hieu D. T., Nam T. L.: Bernstein type theorem for entire weighted minimal graphs in $\mathbb{G}^n\times\mathbb{R}$.J. Geom. Phys. 81 (2014), 87–91. MR 3194217, 10.1016/j.geomphys.2014.03.011
Reference: [22] Impera D., de Lira J. H., Pigola S., Setti A. G.: Height estimates for Killing graphs.J. Geom. Anal. 28 (2018), no. 3, 2857–2885. MR 3833821, 10.1007/s12220-017-9938-5
Reference: [23] Impera D., Rimoldi M.: Stability properties and topology at infinity of $f$-minimal hypersurfaces.Geom. Dedicata 178 (2015), 21–47. MR 3397480, 10.1007/s10711-014-9999-6
Reference: [24] Jellett J. J.: Sur la surface dont la courbure moyenne est constante.J. Math. Pures Appl. 18 (1853), 163–167 (French).
Reference: [25] Lichnerowicz A.: Variétés Riemanniennes à tenseur C non négatif.C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650–A653 (French). MR 0268812
Reference: [26] Lichnerowicz A.: Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative.J. Differential Geometry 6 (1971/72), 47–94 (French). MR 0300228
Reference: [27] Liebmann H.: Eine neue Eigenschaft der Kugel.Nachr. Kg. Ges. Wiss. Götingen, Math. Phys. Kl. (1899), 44–55 (German).
Reference: [28] McGonagle M., Ross J.: The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space.Geom. Dedicata 178 (2015), 277–296. MR 3397495, 10.1007/s10711-015-0057-9
Reference: [29] Montiel S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds.Indiana Univ. Math. J. 48 (1999), no. 2, 711–748. MR 1722814, 10.1512/iumj.1999.48.1562
Reference: [30] O'Neill B.: Semi-Riemannian Geometry.With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023
Reference: [31] Pan T. K.: Conformal vector fields in compact Riemannian manifolds.Proc. Amer. Math. Soc. 14 (1963), 653–657. MR 0157324, 10.1090/S0002-9939-1963-0157324-2
Reference: [32] Rosales C., Ca nete A., Bayle V., Morgan F.: On the isoperimetric problem in Euclidean space with density.Calc. Var. Partial Differential Equations 31 (2008), no. 1, 27–46. MR 2342613, 10.1007/s00526-007-0104-y
Reference: [33] Wei G., Wylie W.: Comparison geometry for the Bakry–Émery Ricci tensor.J. Differential Geom. 83 (2009), no. 2, 377–405. MR 2577473
Reference: [34] Yau S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry.Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR 0417452, 10.1512/iumj.1976.25.25051
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-2_5.pdf 329.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo