Previous |  Up |  Next

Article

Title: On the continuity of the elements of the Ellis semigroup and other properties (English)
Author: García-Ferreira, Salvador
Author: Rodríguez-López, Yackelin
Author: Uzcátegui, Carlos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 2
Year: 2021
Pages: 225-241
Summary lang: English
.
Category: math
.
Summary: We consider discrete dynamical systems whose phase spaces are compact metrizable countable spaces. In the first part of the article, we study some properties that guarantee the continuity of all functions of the corresponding Ellis semigroup. For instance, if every accumulation point of $X$ is fixed, we give a necessary and sufficient condition on a point $a\in X'$ in order that all functions of the Ellis semigroup $E(X,f)$ be continuous at the given point $a$. In the second part, we consider transitive dynamical systems. We show that if $(X,f)$ is a transitive dynamical system and either every function of $E(X,f)$ is continuous or $|\omega_f(x)|=1$ for each accumulation point $x$ of $X$, then $E(X,f)$ is homeomorphic to $X$. Several examples are given to illustrate our results. (English)
Keyword: discrete dynamical system
Keyword: Ellis semigroup
Keyword: $p$-iterate
Keyword: $p$-limit point
Keyword: ultrafilter
Keyword: compact metric countable space
MSC: 54D80
MSC: 54G20
idZBL: Zbl 07396220
idMR: MR4303579
DOI: 10.14712/1213-7243.2021.014
.
Date available: 2021-07-28T08:39:13Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/149013
.
Reference: [1] Akin E., Glasner E.: WAP systems and labeled subshifts.Mem. Amer. Math. Soc. 262 (2019), no. 1265, v+116 pages. MR 4044461
Reference: [2] Blass A.: Ultrafilters: where topological dynamics = algebra = combinatorics.Topology Proc. 18 (1993), 33–56. MR 1305122
Reference: [3] Bernstein A. R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1969/70), 185–193. Zbl 0198.55401, MR 0251697, 10.4064/fm-66-2-185-193
Reference: [4] Ellis R.: A semigroup associated with a transformation group.Trans. Amer. Math. Soc. 94 (1960), 272–281. MR 0123636, 10.1090/S0002-9947-1960-0123636-3
Reference: [5] Ellis R., Nerurkar M.: Weakly almost periodic flows.Trans. Amer. Math. Soc. 313 (1989), no. 1, 103–119. MR 0930084, 10.1090/S0002-9947-1989-0930084-3
Reference: [6] Furstenberg H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.M. B. Porter Lectures, Princeton University Press, Princeton, 1981. Zbl 0459.28023, MR 0603625
Reference: [7] García-Ferreira S.: Dynamical properties of certain continuous self maps of the Cantor set.Topology Appl. 159 (2012), no. 7, 1719–1733. MR 2904060, 10.1016/j.topol.2011.06.062
Reference: [8] García-Ferreira S., Rodriguez-López Y., Uzcátegui C.: Iterates of dynamical systems on compact metrizable countable spaces.Topology Appl. 180 (2015), 100–110. MR 3293269, 10.1016/j.topol.2014.11.007
Reference: [9] García-Ferreira S., Rodríguez-López Y., Uzcátegui C.: Cardinality of the Ellis semigroup on compact metric countable spaces.Semigroup Forum 97 (2018), no. 1, 162–176. MR 3818356, 10.1007/s00233-017-9888-z
Reference: [10] García-Ferreira S., Sanchis M.: Ultrafilter-limit points in metric dynamical systems.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 465–485. MR 2374128
Reference: [11] Glasner E.: Enveloping semigroups in topological dynamics.Topology Appl. 154 (2007), no. 11, 2344–2363. MR 2328017, 10.1016/j.topol.2007.03.009
Reference: [12] Hindman N.: Ultrafilters and Ramsey theory-an update.Set Theory and Its Applications, Lecture Notes in Mathematics, 1401, Springer, Berlin, 1989, pages 97–118. MR 1031768, 10.1007/BFb0097334
Reference: [13] Mazurkiewicz S., Sierpiński W.: Contribution à la topologie des ensembles dénombrables.Fundamenta Mathematicae 1 (1920), 17–27 (Spanish). 10.4064/fm-1-1-17-27
Reference: [14] Szuca P.: $\mathcal{F}$-limit points in dynamical systems defined on the interval.Cent. Eur. J. Math. 11 (2013), no. 1, 170–176. MR 2988790
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-2_7.pdf 263.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo