Previous |  Up |  Next

Article

Title: Coarse homotopy on metric spaces and their corona (English)
Author: Hartmann, Elisa
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 2
Year: 2021
Pages: 243-257
Summary lang: English
.
Category: math
.
Summary: This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms. (English)
Keyword: Higson corona
Keyword: coarse geometry
MSC: 51F99
MSC: 54H99
idZBL: Zbl 07396221
idMR: MR4303580
DOI: 10.14712/1213-7243.2021.011
.
Date available: 2021-07-28T08:40:32Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/149014
.
Reference: [1] Baladze V., Dumbadze F.: On (co)homological properties of Stone–Čech compactifications of completely regular spaces.available at arXiv:1806.01566 [math.AT] (2018), 12 pages. MR 4036389
Reference: [2] Ball B. J., Yokura S.: Compactifications determined by subsets of $C^\ast (X)$. II.Topology Appl. 15 (1983), no. 1, 1–6. MR 0676960, 10.1016/0166-8641(83)90041-X
Reference: [3] Banakh T., Chervak O., Zdomskyy L.: On character of points in the Higson corona of a metric space.Comment. Math. Univ. Carolin. 54 (2013), no. 2, 159–178. MR 3067701
Reference: [4] Cornulier Y., de la Harpe P.: Metric Geometry of Locally Compact Groups.EMS Tracts in Mathematics, 25, European Mathematical Society (EMS), Zürich, 2016. MR 3561300
Reference: [5] Dranishnikov A. N., Keesling J., Uspenskij V. V.: On the Higson corona of uniformly contractible spaces.Topology 37 (1998), no. 4, 791–803. Zbl 0910.54026, MR 1607744, 10.1016/S0040-9383(97)00048-7
Reference: [6] Foertsch T., Schroeder V.: Products of hyperbolic metric spaces.Geom. Dedicata 102 (2003), 197–212. MR 2026845, 10.1023/B:GEOM.0000006539.14783.aa
Reference: [7] Grzegrzolka P., Siegert J.: Boundaries of coarse proximity spaces and boundaries of compactifications.available at arXiv:1812.09802 [math.GN] (2020), 27 pages.
Reference: [8] Hartmann E.: Twisted coefficients on coarse spaces and their corona.available at arXiv:1904.00380 [math.MG] (2019), 14 pages.
Reference: [9] Hartmann E.: A pullback diagram in the coarse category.available at arXiv:1907.02961v1 [math.MG] (2019), 17 pages.
Reference: [10] Hartmann E.: Coarse cohomology with twisted coefficients.Math. Slovaca 70 (2020), no. 6, 1413–1444. MR 4185787, 10.1515/ms-2017-0440
Reference: [11] Kalantari S., Honari B.: Asymptotic resemblance.Rocky Mountain J. Math. 46 (2016), no. 4, 1231–1262. MR 3563180, 10.1216/RMJ-2016-46-4-1231
Reference: [12] Protasov I. V.: Normal ball structures.Mat. Stud. 20 (2003), no. 1, 3–16. Zbl 1053.54503, MR 2019592
Reference: [13] Protasov I. V.: Coronas of balleans.Topology Appl. 149 (2005), no. 1–3, 149–160. Zbl 1068.54036, MR 2130861, 10.1016/j.topol.2004.09.005
Reference: [14] Protasov I. V.: Coronas of ultrametric spaces.Comment. Math. Univ. Carolin. 52 (2011), no. 2, 303–307. Zbl 1240.54087, MR 2849052
Reference: [15] Protasov I. V., Slobodianiuk S. V.: Ultrafilters on balleans.Ukraïn. Mat. Zh. 67 (2015), no. 12, 1698–1706; reprinted in Ukrainian Math. J. 67 (2016), no. 12, 1922–1931. MR 3541296
Reference: [16] Riehl E.: Category Theory in Context.Courier Dover Publications, Dover, 2017.
Reference: [17] Roe J.: Lectures on Coarse Geometry.University Lecture Series, 31, American Mathematical Society, Providence, 2003. Zbl 1042.53027, MR 2007488, 10.1090/ulect/031/10
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-2_8.pdf 236.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo