Title:
|
On atomic ideals in some factor rings of $C(X,\Bbb Z)$ (English) |
Author:
|
Olfati, Alireza |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
259-263 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A nonzero $R$-module $M$ is atomic if for each two nonzero elements $a, b$ in $M$, both cyclic submodules $Ra$ and $Rb$ have nonzero isomorphic submodules. In this article it is shown that for an infinite $P$-space $X$, the factor rings $C(X,\Bbb{Z})/C_F(X,\Bbb{Z})$ and $C_c(X)/C_F(X)$ have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set $X$, the factor ring $\Bbb{Z}^X/ \Bbb{Z}^{(X)}$ has no atomic ideal. Another result is that for each infinite $P$-space $X$, the socle of the factor ring $C_c(X)/C_F(X)$ is always equal to zero. Also, zero-dimensional spaces $X$ are characterized for which $C^F(X,\Bbb{Z})/C_F(X,\Bbb{Z})$ have atomic ideals. (English) |
Keyword:
|
$P$-space |
Keyword:
|
rings of integer-valued continuous functions |
Keyword:
|
functionally countable subalgebra |
Keyword:
|
atomic ideal |
Keyword:
|
socle |
MSC:
|
54C40 |
idZBL:
|
Zbl 07396222 |
idMR:
|
MR4303551 |
DOI:
|
10.14712/1213-7243.2021.013 |
. |
Date available:
|
2021-07-28T08:41:36Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149015 |
. |
Reference:
|
[1] Alling N. L.: Rings of continuous integer-valued functions and nonstandard arithmetic.Trans. Amer. Math. Soc. 118 (1965), 498–525. MR 0184960, 10.1090/S0002-9947-1965-0184960-6 |
Reference:
|
[2] Azarpanah F., Karamzadeh O. A. S., Keshtkar Z., Olfati A. R.: On maximal ideals of $C_c(X)$ and the uniformity of its localizations.Rocky Mountain J. Math. 48 (2018), no. 2, 345–384. MR 3809150, 10.1216/RMJ-2018-48-2-345 |
Reference:
|
[3] Azarpanah F., Karamzadeh O. A. S., Rahmati S.: $C(X)$ vs. $C(X)$ modulo its socle.Colloq. Math. 111 (2008), no. 2, 315–336. MR 2365803, 10.4064/cm111-2-9 |
Reference:
|
[4] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, 43, Springer, New York, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[5] Karamzadeh O. A. S., Rostami M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), no. 1, 179–184. Zbl 0524.54013, MR 0766552 |
Reference:
|
[6] Martinez J.: $C(X, \mathbb{Z})$ revisited.Adv. Math. 99 (1993), no. 2, 152–161. MR 1219582, 10.1006/aima.1993.1022 |
Reference:
|
[7] Momtahan E., Motamedi M.: A study on dimensions of modules.Bull. Iranian. Math. Soc. 43 (2017), no. 5, 1227–1235. MR 3730636 |
Reference:
|
[8] Mozaffarikhah A., Momtahan E., Olfati A. R., Safaeeyan S.: $p$-semisimple modules and type submodules.J. Algebra Appl. 19 (2020), no. 4, 2050078, 22 pages. MR 4098942, 10.1142/S0219498820500784 |
Reference:
|
[9] Olfati A. R.: Homomorphisms from $C(X, \mathbb{Z})$ into a ring of continuous functions.Algebra Universalis 79 (2018), no. 2, Paper No. 34, 26 pages. MR 3788813, 10.1007/s00012-018-0509-9 |
Reference:
|
[10] Pierce R. S.: Rings of integer-valued continuous functions.Trans. Amer. Math. Soc. 100 (1961), 371–394. Zbl 0196.15401, MR 0131438, 10.1090/S0002-9947-1961-0131438-8 |
. |