Previous |  Up |  Next

Article

Title: Row Hadamard majorization on ${\bf M}_{m,n}$ (English)
Author: Askarizadeh, Abbas
Author: Armandnejad, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 743-754
Summary lang: English
.
Category: math
.
Summary: An $m \times n$ matrix $R$ with nonnegative entries is called row stochastic if the sum of entries on every row of $R$ is 1. Let ${\bf M}_{m,n}$ be the set of all $m \times n$ real matrices. For $A,B\in \nobreak {\bf M}_{m,n}$, we say that $A$ is row Hadamard majorized by $B$ (denoted by $A\prec _{RH}B)$ if there exists an $m \times n$ row stochastic matrix $R$ such that $A=R\circ B$, where $X \circ Y$ is the Hadamard product (entrywise product) of matrices $X,Y\in {\bf M}_{m,n}$. In this paper, we consider the concept of row Hadamard majorization as a relation on ${\bf M}_{m,n}$ and characterize the structure of all linear operators $T\colon {\bf M}_{m,n} \rightarrow {\bf M}_{m,n}$ preserving (or strongly preserving) row Hadamard majorization. Also, we find a theoretic graph connection with linear preservers (or strong linear preservers) of row Hadamard majorization, and we give some equivalent conditions for these linear operators on ${\bf M}_{n}$. (English)
Keyword: linear preserver
Keyword: row Hadamard majorization
Keyword: row stochastic matrix
MSC: 15A04
MSC: 15A21
idZBL: 07396194
idMR: MR4295242
DOI: 10.21136/CMJ.2020.0081-20
.
Date available: 2021-08-02T08:05:05Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149053
.
Reference: [1] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Encyclopedia of Mathematics and Its Applications 39. Cambridge University Press, New York (1991). Zbl 0746.05002, MR 1130611, 10.1017/CBO9781107325708
Reference: [2] Cheon, G.-S., Lee, Y.-H.: The doubly stochastic matrices of a multivariate majorization.J. Korean Math. Soc. 32 (1995), 857-867. Zbl 0839.15018, MR 1364595
Reference: [3] Dahl, G.: Matrix majorization.Linear Algebra Appl. 288 (1999), 53-73. Zbl 0930.15023, MR 1670598, 10.1016/S0024-3795(98)10175-1
Reference: [4] Hasani, A. M., Radjabalipour, M.: Linear preserver of matrix majorization.Int. J. Pure Appl. Math. 32 (2006), 475-482. Zbl 1126.15003, MR 2275080
Reference: [5] Hasani, A. M., Radjabalipour, M.: The structure of linear operators strongly preserving majorization of matrices.Electron. J. Linear Algebra 15 (2006), 260-268. Zbl 1145.15003, MR 2255479, 10.13001/1081-3810.1236
Reference: [6] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of Hadamard majorization.Electron. J. Linear Algebra 31 (2016), 593-609. Zbl 1347.15005, MR 3578394, 10.13001/1081-3810.3281
.

Files

Files Size Format View
CzechMathJ_71-2021-3_8.pdf 263.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo