Previous |  Up |  Next

Article

Title: Non-normality points and nice spaces (English)
Author: Logunov, Sergei
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 3
Year: 2021
Pages: 383-392
Summary lang: English
.
Category: math
.
Summary: J. Terasawa in "$\beta X-\{p\}$ are non-normal for non-discrete spaces $X$" (2007) and the author in "On non-normality points and metrizable crowded spaces" (2007), independently showed for any metrizable crowded space $X$ that each point $p$ of its Čech--Stone remainder $X^{*}$ is a non-normality point of $\beta X$. We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space. (English)
Keyword: non-normality point
Keyword: butterfly-point
Keyword: nice family
Keyword: nice space
Keyword: metrizable crowded space
Keyword: Sorgenfrey line
MSC: 54D15
MSC: 54D35
MSC: 54D40
MSC: 54D80
MSC: 54E35
MSC: 54G20
idMR: MR4331289
DOI: 10.14712/1213-7243.2021.019
.
Date available: 2021-10-20T09:24:11Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149147
.
Reference: [1] Błaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space.in Abstracta, 8th Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
Reference: [2] Logunov S.: On hereditary normality of compactifications.Topology Appl. 73 (1996), no. 3, 213–216. 10.1016/S0166-8641(96)00063-6
Reference: [3] Logunov S.: On hereditary normality of zero-dimensional spaces.Topology Appl. 102 (2000), no. 1, 53–58. 10.1016/S0166-8641(98)00137-0
Reference: [4] Logunov S.: On remote points, non-normality and $\pi $-weight $\omega _{1}$.Comment. Math. Univ. Carolin. 42 (2001), no. 2, 379–384.
Reference: [5] Logunov S.: On non-normality points and metrizable crowded spaces.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527.
Reference: [6] Logunov S.: Non-normality points and big products of metrizable spaces.Topology Proc. 46 (2015), 73–85.
Reference: [7] Šapirovskiĭ B. È.: The embedding of extremely disconnected spaces in bicompacta. b-points and weight of point-wise normal spaces.Dokl. Akad. Nauk SSSR 223 (1975), no. 5, 1083–1086 (Russian).
Reference: [8] Terasawa J.: $\beta X-\{p\}$ are non-normal for non-discrete spaces $X$.Topology Proc. 31 (2007), no. 1, 309–317.
Reference: [9] Warren N. M.: Properties of Stone–Čech compactifications of discrete spaces.Proc. Amer. Math. Soc. 33 (1972), 599–606.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-3_9.pdf 210.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo