Previous |  Up |  Next

Article

Title: Chromatic number of the product of graphs, graph homomorphisms, antichains and cofinal subsets of posets without AC (English)
Author: Banerjee, Amitayu
Author: Gyenis, Zalán
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 3
Year: 2021
Pages: 361-382
Summary lang: English
.
Category: math
.
Summary: In set theory without the axiom of choice (AC), we observe new relations of the following statements with weak choice principles. $\circ$ If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. $\circ$ If in a partially ordered set, all chains are finite and all antichains have size $\aleph_{\alpha}$, then the set has size $\aleph_{\alpha}$ for any regular $\aleph_{\alpha}$. $\circ$ Every partially ordered set without a maximal element has two disjoint cofinal sub sets -- CS. $\circ$ Every partially ordered set has a cofinal well-founded subset -- CWF. $\circ$ Dilworth's decomposition theorem for infinite partially ordered sets of finite width -- DT. We also study a graph homomorphism problem and a problem due to A. Hajnal without AC. Further, we study a few statements restricted to linearly-ordered structures without AC. (English)
Keyword: chromatic number of product of graphs
Keyword: ultrafilter lemma
Keyword: permutation model
Keyword: Dilworth's theorem
Keyword: chain
Keyword: antichain
Keyword: Loeb's theorem
Keyword: application of Loeb's theorem
MSC: 03E25
MSC: 03E35
MSC: 05C15
idMR: MR4331288
DOI: 10.14712/1213-7243.2021.028
.
Date available: 2021-10-20T09:23:43Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149150
.
Reference: [1] Banaschewski B.: Algebraic closure without choice.Z. Math. Logik Grundlag. Math. 38 (1992), no. 4, 383–385. 10.1002/malq.19920380136
Reference: [2] Cowen R. H.: Generalizing König's infinity lemma.Notre Dame J. Formal Logic 18 (1977), no. 2, 243–247. 10.1305/ndjfl/1093887927
Reference: [3] Dilworth R. P.: A decomposition theorem for partially ordered sets.Ann. of Math. (2) 51 (1950), 161–166. 10.2307/1969503
Reference: [4] Hajnal A.: The chromatic number of the product of two $\aleph_{1}$-chromatic graphs can be countable.Combinatorica 5 (1985), no. 2, 137–139. 10.1007/BF02579376
Reference: [5] Halbeisen L., Tachtsis E.: On Ramsey choice and partial choice for infinite families of $n$-element sets.Arch. Math. Logic 59 (2020), no. 5–6, 583–606. 10.1007/s00153-019-00705-7
Reference: [6] Hall M. Jr.: Distinct representatives of subsets.Bull. Amer. Math. Soc. 54 (1948), 922–926. 10.1090/S0002-9904-1948-09098-X
Reference: [7] Howard P. E.: Binary consistent choice on pairs and a generalization of König's infinity lemma.Fund. Math. 121 (1984), no. 1, 17–23. 10.4064/fm-121-1-17-23
Reference: [8] Howard P., Rubin J. E.: Consequences of the Axiom of Choice.Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. Zbl 0947.03001, 10.1090/surv/059
Reference: [9] Howard P., Saveliev D. I., Tachtsis E.: On the set-theoretic strength of the existence of disjoint cofinal sets in posets without maximal elements.MLQ Math. Log. Q. 62 (2016), no. 3, 155–176. 10.1002/malq.201400089
Reference: [10] Howard P., Tachtsis E.: On vector spaces over specific fields without choice.MLQ Math. Log. Q. 59 (2013), no. 3, 128–146. Zbl 1278.03082, 10.1002/malq.201200049
Reference: [11] Jech T. J.: The Axiom of Choice.Studies in Logic and the Foundations of Mathematics, 75, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1973. Zbl 0259.02052
Reference: [12] Keremedis K.: The compactness of $2^{\mathbb{R}}$ and the axiom of choice.MLQ Math. Log. Q. 46 (2000), no. 4, 569–571. 10.1002/1521-3870(200010)46:4<569::AID-MALQ569>3.0.CO;2-J
Reference: [13] Komjáth P., Totik V.: Problems and Theorems in Classical Set Theory.Problem Books in Mathematics, Springer, New York, 2006.
Reference: [14] Loeb P. A.: A new proof of the Tychonoff theorem.Amer. Math. Monthly 72 (1965), no. 7, 711–717. 10.1080/00029890.1965.11970596
Reference: [15] Łoś J., Ryll-Nardzewski C.: On the application of Tychonoff's theorem in mathematical proofs.Fund. Math. 38 (1951), no. 1, 233–237. 10.4064/fm-38-1-233-237
Reference: [16] Tachtsis E.: On Martin’s axiom and forms of choice.MLQ Math. Log. Q. 62 (2016), no. 3, 190–203. 10.1002/malq.201400115
Reference: [17] Tachtsis E.: On Ramsey's theorem and the existence of infinite chains or infinite anti-chains in infinite posets.J. Symb. Log. 81 (2016), no. 1, 384–394. 10.1017/jsl.2015.47
Reference: [18] Tachtsis E.: On the minimal cover property and certain notions of finite.Arch. Math. Logic. 57 (2018), no. 5–6, 665–686. 10.1007/s00153-017-0595-y
Reference: [19] Tachtsis E.: Dilworth's decomposition theorem for posets in ZF.Acta Math. Hungar. 159 (2019), no. 2, 603–617. 10.1007/s10474-019-00967-w
Reference: [20] Tachtsis E.: Łoś's theorem and the axiom of choice.MLQ Math. Log. Q. 65 (2019), no. 3, 280–292. 10.1002/malq.201700074
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-3_8.pdf 323.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo