Previous |  Up |  Next

Article

Keywords:
Golomb topology; topologically rigid space
Summary:
The Golomb space ${\mathbb N}_\tau$ is the set ${\mathbb N}$ of positive integers endowed with the topology $\tau$ generated by the base consisting of arithmetic progressions $\{a+bn: n\ge 0\}$ with coprime $a,b$. We prove that the Golomb space ${\mathbb N}_\tau$ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.
References:
[1] Banakh T.: Is the Golomb countable connected space topologically rigid?. https://mathoverflow.net/questions/285557
[2] Banakh T., Mioduszewski J., Turek S.: On continuous self-maps and homeomorphisms of the Golomb space. Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442.
[3] Brown M.: A countable connected Hausdorff space. Bull. Amer. Math. Soc. 59 (1953), Abstract #423, page 367.
[4] Clark P. L., Lebowitz-Lockard N., Pollack P.: A Note on Golomb topologies. Quaest. Math. 42 (2019), no. 1, 73–86. DOI 10.2989/16073606.2018.1438533
[5] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[6] Gauss C. F.: Disquisitiones Arithmeticae. Springer, New York, 1986. Zbl 1167.11001
[7] Golomb S.: A connected topology for the integers. Amer. Math. Monthly 66 (1959), 663–665. DOI 10.1080/00029890.1959.11989385
[8] Golomb S.: Arithmetica topologica. in: General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Prague (1962), pages 179–186 (Italian).
[9] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, 84, Springer, New York, 1990.
[10] Jones G. A., Jones J. M.: Elementary Number Theory. Springer Undergraduate Mathematics Series, Springer, London, 1998.
[11] Knopfmacher J., Porubský Š.: Topologies related to arithmetical properties of integral domains. Exposition. Math. 15 (1997), no. 2, 131–148.
[12] Robinson D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics, 80, Springer, New York, 1996. Zbl 0836.20001
[13] Spirito D.: The Golomb topology on a Dedekind domain and the group of units of its quotients. Topology Appl. 273 (2020), 107101, 20 pages. DOI 10.1016/j.topol.2020.107101
[14] Spirito D.: The Golomb topology of polynomial rings. Quaest. Math. 44 (2021), no. 4, 447–468. DOI 10.2989/16073606.2019.1704904
[15] Steen L. A., Seebach J. A., Jr.: Counterexamples in Topology. Dover Publications, Mineola, New York, 1995. Zbl 0386.54001
[16] Szczuka P.: The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies. Demonstratio Math. 43 (2010), no. 4, 899–909. DOI 10.1515/dema-2010-0416
[17] Szczuka P.: The Darboux property for polynomials in Golomb's and Kirch's topologies. Demonstratio Math. 46 (2013), no. 2, 429–435.
Partner of
EuDML logo