Title:
|
The Golomb space is topologically rigid (English) |
Author:
|
Banakh, Taras |
Author:
|
Spirito, Dario |
Author:
|
Turek, Sławomir |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
347-360 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The Golomb space ${\mathbb N}_\tau$ is the set ${\mathbb N}$ of positive integers endowed with the topology $\tau$ generated by the base consisting of arithmetic progressions $\{a+bn: n\ge 0\}$ with coprime $a,b$. We prove that the Golomb space ${\mathbb N}_\tau$ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017. (English) |
Keyword:
|
Golomb topology |
Keyword:
|
topologically rigid space |
MSC:
|
11A99 |
MSC:
|
54G15 |
idMR:
|
MR4331287 |
DOI:
|
10.14712/1213-7243.2021.023 |
. |
Date available:
|
2021-10-20T09:23:11Z |
Last updated:
|
2023-10-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149148 |
. |
Reference:
|
[1] Banakh T.: Is the Golomb countable connected space topologically rigid?.https://mathoverflow.net/questions/285557. |
Reference:
|
[2] Banakh T., Mioduszewski J., Turek S.: On continuous self-maps and homeomorphisms of the Golomb space.Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442. |
Reference:
|
[3] Brown M.: A countable connected Hausdorff space.Bull. Amer. Math. Soc. 59 (1953), Abstract #423, page 367. |
Reference:
|
[4] Clark P. L., Lebowitz-Lockard N., Pollack P.: A Note on Golomb topologies.Quaest. Math. 42 (2019), no. 1, 73–86. 10.2989/16073606.2018.1438533 |
Reference:
|
[5] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[6] Gauss C. F.: Disquisitiones Arithmeticae.Springer, New York, 1986. Zbl 1167.11001 |
Reference:
|
[7] Golomb S.: A connected topology for the integers.Amer. Math. Monthly 66 (1959), 663–665. 10.1080/00029890.1959.11989385 |
Reference:
|
[8] Golomb S.: Arithmetica topologica.in: General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Prague (1962), pages 179–186 (Italian). |
Reference:
|
[9] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics, 84, Springer, New York, 1990. |
Reference:
|
[10] Jones G. A., Jones J. M.: Elementary Number Theory.Springer Undergraduate Mathematics Series, Springer, London, 1998. |
Reference:
|
[11] Knopfmacher J., Porubský Š.: Topologies related to arithmetical properties of integral domains.Exposition. Math. 15 (1997), no. 2, 131–148. |
Reference:
|
[12] Robinson D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics, 80, Springer, New York, 1996. Zbl 0836.20001 |
Reference:
|
[13] Spirito D.: The Golomb topology on a Dedekind domain and the group of units of its quotients.Topology Appl. 273 (2020), 107101, 20 pages. 10.1016/j.topol.2020.107101 |
Reference:
|
[14] Spirito D.: The Golomb topology of polynomial rings.Quaest. Math. 44 (2021), no. 4, 447–468. 10.2989/16073606.2019.1704904 |
Reference:
|
[15] Steen L. A., Seebach J. A., Jr.: Counterexamples in Topology.Dover Publications, Mineola, New York, 1995. Zbl 0386.54001 |
Reference:
|
[16] Szczuka P.: The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies.Demonstratio Math. 43 (2010), no. 4, 899–909. 10.1515/dema-2010-0416 |
Reference:
|
[17] Szczuka P.: The Darboux property for polynomials in Golomb's and Kirch's topologies.Demonstratio Math. 46 (2013), no. 2, 429–435. |
. |