Previous |  Up |  Next

Article

Title: The Golomb space is topologically rigid (English)
Author: Banakh, Taras
Author: Spirito, Dario
Author: Turek, Sławomir
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 3
Year: 2021
Pages: 347-360
Summary lang: English
.
Category: math
.
Summary: The Golomb space ${\mathbb N}_\tau$ is the set ${\mathbb N}$ of positive integers endowed with the topology $\tau$ generated by the base consisting of arithmetic progressions $\{a+bn: n\ge 0\}$ with coprime $a,b$. We prove that the Golomb space ${\mathbb N}_\tau$ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017. (English)
Keyword: Golomb topology
Keyword: topologically rigid space
MSC: 11A99
MSC: 54G15
idMR: MR4331287
DOI: 10.14712/1213-7243.2021.023
.
Date available: 2021-10-20T09:23:11Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149148
.
Reference: [1] Banakh T.: Is the Golomb countable connected space topologically rigid?.https://mathoverflow.net/questions/285557.
Reference: [2] Banakh T., Mioduszewski J., Turek S.: On continuous self-maps and homeomorphisms of the Golomb space.Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442.
Reference: [3] Brown M.: A countable connected Hausdorff space.Bull. Amer. Math. Soc. 59 (1953), Abstract #423, page 367.
Reference: [4] Clark P. L., Lebowitz-Lockard N., Pollack P.: A Note on Golomb topologies.Quaest. Math. 42 (2019), no. 1, 73–86. 10.2989/16073606.2018.1438533
Reference: [5] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [6] Gauss C. F.: Disquisitiones Arithmeticae.Springer, New York, 1986. Zbl 1167.11001
Reference: [7] Golomb S.: A connected topology for the integers.Amer. Math. Monthly 66 (1959), 663–665. 10.1080/00029890.1959.11989385
Reference: [8] Golomb S.: Arithmetica topologica.in: General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Prague (1962), pages 179–186 (Italian).
Reference: [9] Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics, 84, Springer, New York, 1990.
Reference: [10] Jones G. A., Jones J. M.: Elementary Number Theory.Springer Undergraduate Mathematics Series, Springer, London, 1998.
Reference: [11] Knopfmacher J., Porubský Š.: Topologies related to arithmetical properties of integral domains.Exposition. Math. 15 (1997), no. 2, 131–148.
Reference: [12] Robinson D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics, 80, Springer, New York, 1996. Zbl 0836.20001
Reference: [13] Spirito D.: The Golomb topology on a Dedekind domain and the group of units of its quotients.Topology Appl. 273 (2020), 107101, 20 pages. 10.1016/j.topol.2020.107101
Reference: [14] Spirito D.: The Golomb topology of polynomial rings.Quaest. Math. 44 (2021), no. 4, 447–468. 10.2989/16073606.2019.1704904
Reference: [15] Steen L. A., Seebach J. A., Jr.: Counterexamples in Topology.Dover Publications, Mineola, New York, 1995. Zbl 0386.54001
Reference: [16] Szczuka P.: The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies.Demonstratio Math. 43 (2010), no. 4, 899–909. 10.1515/dema-2010-0416
Reference: [17] Szczuka P.: The Darboux property for polynomials in Golomb's and Kirch's topologies.Demonstratio Math. 46 (2013), no. 2, 429–435.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-3_7.pdf 250.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo