Previous |  Up |  Next

Article

Title: On a class of variational problems with linear growth and radial symmetry (English)
Author: Bildhauer, Michael
Author: Fuchs, Martin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 62
Issue: 3
Year: 2021
Pages: 325-345
Summary lang: English
.
Category: math
.
Summary: We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary. (English)
Keyword: linear growth problem
Keyword: symmetric solutions in 2D
Keyword: existence of solutions in 2D
Keyword: uniqueness solution in 2D
Keyword: (non-)attainment of boundary data
MSC: 49J45
MSC: 49N60
idMR: MR4331286
DOI: 10.14712/1213-7243.2021.022
.
Date available: 2021-10-20T09:22:40Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149149
.
Reference: [1] Adams R. A.: Sobolev Spaces.Pure and Applied Mathematics, 65, Academic Press, New York, 1975. Zbl 1098.46001, MR 0450957
Reference: [2] Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems.Oxford Mathematical Monographs, 224, The Clarendon Press, Oxford University Press, New York, 2000. Zbl 0957.49001
Reference: [3] Beck L., Bulíček M., Málek J., Süli E.: On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth.Arch. Ration. Mech. Anal. 225 (2017), no. 2, 717–769. 10.1007/s00205-017-1113-4
Reference: [4] Beck L., Bulíček M., Maringová E.: Globally Lipschitz minimizers for variational problems with linear growth.ESAIM Control Optim. Calc. Var. 24 (2018), no. 4, 1395–1403. 10.1051/cocv/2017065
Reference: [5] Beck L., Schmidt T.: On the Dirichlet problem for variational integrals in $BV$.J. Reine Angew. Math. 674 (2013), 113–194.
Reference: [6] Beck L., Schmidt T.: Convex duality and uniqueness for BV-minimizers.J. Funct. Anal. 268 (2015), no. 10, 3061–3107. 10.1016/j.jfa.2015.03.006
Reference: [7] Bildhauer M.: Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions.Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003. 10.1007/b12308
Reference: [8] Bildhauer M., Fuchs M.: On a class of variational integrals with linear growth satisfying the condition of $\mu$-ellipticity.Rend. Mat. Appl. 22 (2002), no. 7, 249–274.
Reference: [9] Bildhauer M., Fuchs M.: A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation.Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ 41, 5–17, 234; reprinted in J. Math. Sci. (N.Y.) 178 (2011), no. 3, 235–242.
Reference: [10] Bildhauer M., Fuchs M.: Some remarks on the (non-)attainment of the boundary data for variational problems in the space BV.J. Convex Anal. 25 (2018), no. 1, 219–223.
Reference: [11] Bulíček M., Málek J., Rajagopal K., Süli E.: On elastic solids with limiting small strain: modelling and analysis.EMS Surv. Math. Sci. 1 (2014), no. 2, 283–332. 10.4171/EMSS/7
Reference: [12] Bulíček M., Málek J., Rajagopal K. R., Walton J. R.: Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies.Calc. Var. Partial Differential Equations 54 (2015), no. 2, 2115–2147. 10.1007/s00526-015-0859-5
Reference: [13] Bulíček M., Málek J., Süli E.: Analysis and approximation of a strain-limiting nonlinear elastic model.Math. Mech. Solids 20 (2015), no. 1, 92–118. 10.1177/1081286514543601
Reference: [14] Bulíček M., Maringová E., Stroffolini B., Verde A.: A boundary regularity result for minimizers of variational integrals with nonstandard growth.Nonlinear Anal. 177 (2018), part A, 153–168.
Reference: [15] Buttazzo G., Giaquinta M., Hildebrandt S.: One-dimensional Variational Problems.An Introduction, Oxford Lecture Series in Mathematics and Its Applications, 15, The Clarendon Press, Oxford University Press, New York, 1998.
Reference: [16] Finn R.: Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature.J. Analyse Math. 14 (1965), 139–160. 10.1007/BF02806384
Reference: [17] Giaquinta M., Modica G., Souček J.: Functionals with linear growth in the calculus of variations. I.Comment. Math. Univ. Carolin. 20 (1979), no. 1, 143–156.
Reference: [18] Giaquinta M., Modica G., Souček J.: Functionals with linear growth in the calculus of variations. II.Comment. Math. Univ. Carolin. 20 (1979), no. 1, 157–172.
Reference: [19] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations. I. Cartesian Currents.Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 37, Springer, Berlin, 1998.
Reference: [20] Giaquinta M., Modica G., Souček, J.: Cartesian Currents in the Calculus of Variations. II. Cartesian Currents.Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 38, Springer, Berlin, 1998.
Reference: [21] Giusti E.: Minimal Surfaces and Functions of Bounded Variation.Monographs in Mathematics, 80, Birkhäuser, Basel, 1984. Zbl 0825.49059
Reference: [22] Goffman C., Serrin J.: Sublinear functions of measures and variational integrals.Duke Math. J. 31 (1964), 159–178. 10.1215/S0012-7094-64-03115-1
Reference: [23] Reshetnyak Y.: Weak convergence of completely additive vector functions on a set.Sibirsk. Maz. Ž. 9 (1968), 1386–1394; English translation: Sib. Math. J. 9 (1968), 1039–1045.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_62-2021-3_6.pdf 263.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo