Previous |  Up |  Next

Article

Title: On unit group of finite semisimple group algebras of non-metabelian groups up to order 72 (English)
Author: Mittal, Gaurav
Author: Sharma, Rajendra Kumar
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 4
Year: 2021
Pages: 429-455
Summary lang: English
.
Category: math
.
Summary: We characterize the unit group of semisimple group algebras $\mathbb {F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72. (English)
Keyword: unit group
Keyword: finite field
Keyword: Wedderburn decomposition
MSC: 16U60
MSC: 20C05
idZBL: Zbl 07442512
idMR: MR4336549
DOI: 10.21136/MB.2021.0116-19
.
Date available: 2021-11-08T16:20:30Z
Last updated: 2021-12-29
Stable URL: http://hdl.handle.net/10338.dmlcz/149259
.
Reference: [1] Bovdi, A. A., Kurdics, J.: Lie properties of the group algebra and the nilpotency class of the group of units.J. Algebra 212 (1999), 28-64. Zbl 0936.16028, MR 1670626, 10.1006/jabr.1998.7617
Reference: [2] Bovdi, V., Salim, M.: On the unit group of a commutative group ring.Acta Sci. Math. 80 (2014), 433-445. Zbl 1322.16024, MR 3307035, 10.14232/actasm-013-510-1
Reference: [3] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$.Can. Math. Bull. 54 (2011), 237-243. Zbl 1242.16033, MR 2884238, 10.4153/CMB-2010-098-5
Reference: [4] Ferraz, R. A.: Simple components of the center of $FG/J(FG)$.Commun. Algebra 36 (2008), 3191-3199. Zbl 1156.16019, MR 2441107, 10.1080/00927870802103503
Reference: [5] Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}A_4$.Czech. Math. J. 61 (2011), 531-539. Zbl 1237.16035, MR 2905421, 10.1007/s10587-011-0071-5
Reference: [6] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order 12 over any finite field of characteristic 3.Algebra Discrete Math. 11 (2011), 46-58. Zbl 1256.16023, MR 2868359
Reference: [7] Hurley, T.: Convolutional codes from units in matrix and group rings.Int. J. Pure Appl. Math. 50 (2009), 431-463. Zbl 1173.94452, MR 2490664
Reference: [8] Karpilovsky, G.: The Jacobson Radical of Group Algebras.North-Holland Mathematics Studies 135. North-Holland, Amsterdam (1987). Zbl 0618.16001, MR 0886889, 10.1016/s0304-0208(08)x7052-5
Reference: [9] Khan, M., Sharma, R. K., Srivastava, J. B.: The unit group of $FS_4$.Acta Math. Hung. 118 (2008), 105-113. Zbl 1156.16024, MR 2378543, 10.1007/s10474-007-6169-4
Reference: [10] Kumar, Y.: On The Unit Group Of Certain Finite Group Algebras.PhD Thesis. Indian Institute of Technology Delhi (IIT Delhi), New Delhi (2019), Available at \brokenlink{http://{eprint.iitd.ac.in/bitstream/handle/2074/8276/TH-5966.pdf?sequence=1}}\kern0pt.
Reference: [11] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.Cambridge University Press, Cambridge (1994). Zbl 0820.11072, MR 1294139, 10.1017/CBO9781139172769
Reference: [12] Maheshwari, S., Sharma, R. K.: The unit group of group algebra $F_qSL(2;Z_3)$.J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. Zbl 1429.16027, MR 3450932, 10.13069/jacodesmath.83854
Reference: [13] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of $F_q[D_{30}]$.Serdica Math. J. 41 (2015), 185-198. MR 3363601
Reference: [14] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on the structure of $F_{p^k}A_5/J(F_{p^k}A_5)$.Acta Sci. Math. 82 (2016), 29-43. Zbl 1399.16065, MR 3526335, 10.14232/actasm-014-311-2
Reference: [15] Makhijani, N., Sharma, R. K., Srivastava, J. B.: Units in finite dihedral and quaternion group algebras.J. Egypt. Math. Soc. 24 (2016), 5-7. Zbl 1336.16042, MR 3456857, 10.1016/j.joems.2014.08.001
Reference: [16] Pazderski, G.: The orders to which only belong metabelian groups.Math. Nachr. 95 (1980), 7-16. Zbl 0468.20018, MR 0592878, 10.1002/mana.19800950102
Reference: [17] Perlis, S., Walker, G. L.: Abelian group algebras of finite order.Trans. Am. Math. Soc. 68 (1950), 420-426. Zbl 0038.17301, MR 0034758, 10.1090/S0002-9947-1950-0034758-3
Reference: [18] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings.Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). Zbl 0997.20003, MR 1896125
Reference: [19] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$.Publ. Math. 71 (2007), 21-26. Zbl 1135.16033, MR 2340031
Reference: [20] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FS_3$.Acta Math. Acad. Paedagog. Nyházi 23 (2007), 129-142. Zbl 1135.16034, MR 2368934
Reference: [21] Tang, G., Wei, Y., Li, Y.: Unit groups of group algebras of some small groups.Czech. Math. J. 64 (2014), 149-157. Zbl 1340.16040, MR 3247451, 10.1007/s10587-014-0090-0
.

Files

Files Size Format View
MathBohem_146-2021-4_5.pdf 323.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo