Previous |  Up |  Next

Article

Title: The Niemytzki plane is $\varkappa $-metrizable (English)
Author: Bielas, Wojciech
Author: Kucharski, Andrzej
Author: Plewik, Szymon
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 4
Year: 2021
Pages: 457-469
Summary lang: English
.
Category: math
.
Summary: We prove that the Niemytzki plane is $\varkappa $-metrizable and we try to explain the differences between the concepts of a stratifiable space and a $\varkappa $-metrizable space. Also, we give a characterisation of $\varkappa $-metrizable spaces which is modelled on the version described by Chigogidze. (English)
Keyword: stratifiable space
Keyword: $\varkappa $-metrizable space
Keyword: Niemytzki plane
Keyword: Sorgenfrey line
MSC: 54D15
MSC: 54E35
MSC: 54G20
idZBL: Zbl 07442513
idMR: MR4336550
DOI: 10.21136/MB.2021.0177-19
.
Date available: 2021-11-08T16:21:02Z
Last updated: 2021-12-29
Stable URL: http://hdl.handle.net/10338.dmlcz/149260
.
Reference: [1] Bielas, W., Plewik, Sz.: On $RC$-spaces.Arab. J. Math. 9 (2020), 83-88. Zbl 1435.54008, MR 4062894, 10.1007/s40065-018-0233-5
Reference: [2] Borges, C. J. R.: On stratifiable spaces.Pac. J. Math. 17 (1966), 1-16. Zbl 0175.19802, MR 0188982, 10.2140/pjm.1966.17.1
Reference: [3] Ceder, J. G.: Some generalizations of metric spaces.Pac. J. Math. 11 (1961), 105-125. Zbl 0103.39101, MR 0131860, 10.2140/pjm.1961.11.105
Reference: [4] Chigogidze, A. Ch.: On $\kappa$-metrizable spaces.Russ. Math. Surv. 37 (1982), 209-210 translation from Uspekhi Mat. Nauk 37 1982 241-242. Zbl 0503.54012, MR 0650791, 10.1070/RM1982v037n02ABEH003916
Reference: [5] Engelking, R.: General Topology.Sigma Series in Pure Mathematics 6. Heldermann Verlag, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [6] Kalantan, L.: Results about $\kappa$-normality.Topology Appl. 125 (2002), 47-62. Zbl 1026.54014, MR 1931174, 10.1016/S0166-8641(01)00258-9
Reference: [7] Kalemba, P., Plewik, Sz.: On regular but not completely regular spaces.Topology Appl. 252 (2019), 191-197. Zbl 1407.54014, MR 3884192, 10.1016/j.topol.2018.11.006
Reference: [8] Shchepin, E. V.: Topology of limit spaces with uncountable inverse spectra.Russ. Math. Surv. 31 (1976), 155-191 translation from Uspekhi Mat. Nauk 31 1976 191-226. Zbl 0356.54026, MR 0464137, 10.1070/RM1976v031n05ABEH004195
Reference: [9] Shchepin, E. V.: On $\kappa$-metrizable spaces.Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), 442-478 Russian. Zbl 0409.54040, MR 0534603
Reference: [10] Sierpiński, W.: Introduction to General Topology.University of Toronto Press, Toronto (1934). Zbl 0009.23203
Reference: [11] L. A. Steen, J. A. Seebach, Jr.: Counterexamples in Topology.Holt, Rinehart and Winston, New York (1970). Zbl 0211.54401, MR 0266131
Reference: [12] Suzuki, J., Tamano, K., Tanaka, Y.: $\kappa$-metrizable spaces, stratifiable spaces and metrization.Proc. Am. Math. Soc. 105 (1989), 500-509. Zbl 0672.54021, MR 0933521, 10.1090/S0002-9939-1989-0933521-9
.

Files

Files Size Format View
MathBohem_146-2021-4_6.pdf 257.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo