Title:
|
Signed graphs with at most three eigenvalues (English) |
Author:
|
Ramezani, Farzaneh |
Author:
|
Rowlinson, Peter |
Author:
|
Stanić, Zoran |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
59-77 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate signed graphs with just 2 or 3 distinct eigenvalues, mostly in the context of vertex-deleted subgraphs, the join of two signed graphs or association schemes. (English) |
Keyword:
|
signed graph |
Keyword:
|
join |
Keyword:
|
adjacency matrix |
Keyword:
|
main eigenvalue |
Keyword:
|
net-degree |
Keyword:
|
association scheme |
MSC:
|
05C22 |
MSC:
|
05C50 |
idZBL:
|
Zbl 07511553 |
idMR:
|
MR4389106 |
DOI:
|
10.21136/CMJ.2021.0256-20 |
. |
Date available:
|
2022-03-25T08:26:01Z |
Last updated:
|
2024-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149573 |
. |
Reference:
|
[1] elić, M. Anđ, Koledin, T., Stanić, Z.: On regular signed graphs with three eigenvalues.Discuss. Math., Graph Theory 40 (2020), 405-416. Zbl 1433.05139, MR 4060992, 10.7151/dmgt.2279 |
Reference:
|
[2] Belardo, F., Cioabă, S. M., Koolen, J., Wang, J.: Open problems in the spectral theory of signed graphs.Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. Zbl 1421.05052, MR 3997096, 10.26493/2590-9770.1286.d7b |
Reference:
|
[3] Belardo, F., Simić, S. K.: On the Laplacian coefficients of signed graphs.Linear Algebra Appl. 475 (2015), 94-113. Zbl 1312.05078, MR 3325220, 10.1016/j.laa.2015.02.007 |
Reference:
|
[4] Chan, H. C., Rodger, C. A., Seberry, J.: On inequivalent weighing matrices.Ars Comb. 21A (1986), 299-333. Zbl 0599.05013, MR 0835757 |
Reference:
|
[5] Cheng, X.-M., Gavrilyuk, A. L., Greaves, G. R. W., Koolen, J. H.: Biregular graphs with three eigenvalues.Eur. J. Comb. 56 (2016), 57-80. Zbl 1335.05107, MR 3490095, 10.1016/j.ejc.2016.03.004 |
Reference:
|
[6] Cheng, X.-M., Greaves, G. R. W., Koolen, J. H.: Graphs with three eigenvalues and second largest eigenvalue at most 1.J. Comb. Theory, Ser. B 129 (2018), 55-78. Zbl 1379.05072, MR 3758241, 10.1016/j.jctb.2017.09.004 |
Reference:
|
[7] Colbourn, C. J., (eds.), J. H. Dinitz: Handbook of Combinatorial Designs.Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007). Zbl 1101.05001, MR 2246267, 10.1201/9781420010541 |
Reference:
|
[8] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.J. A. Barth, Leipzig (1995). Zbl 0824.05046, MR 1324340 |
Reference:
|
[9] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518 |
Reference:
|
[10] Harada, M., Munemasa, A.: On the classification of weighing matrices and self-orthogonal codes.J. Comb. Des. 20 (2012), 45-57. Zbl 1252.05026, MR 2864617, 10.1002/jcd.20295 |
Reference:
|
[11] Hou, Y., Tang, Z., Wang, D.: On signed graphs with just two distinct adjacency eigenvalues.Discrete Math. 342 (2019), Article ID 111615, 8 pages. Zbl 1422.05049, MR 3990025, 10.1016/j.disc.2019.111615 |
Reference:
|
[12] McKee, J., Smyth, C.: Integer symmetric matrices having all their eigenvalues in the interval $[-2,2]$.J. Algebra 317 (2007), 260-290. Zbl 1140.15007, MR 2360149, 10.1016/j.jalgebra.2007.05.019 |
Reference:
|
[13] Ramezani, F.: On the signed graphs with two distinct eigenvalues.Util. Math. 114 (2020), 33-48. Zbl 07274222, MR 4230326 |
Reference:
|
[14] Ramezani, F.: Some regular signed graphs with only two distinct eigenvalues.(to appear) in Linear Multilinear Algebra. MR 4388842, 10.1080/03081087.2020.1736979 |
Reference:
|
[15] Ramezani, F., Rowlinson, P., Stanić, Z.: On eigenvalue multiplicity in signed graphs.Discrete Math. 343 (2020), Article ID 111982, 8 pages. Zbl 07233221, MR 4107756, 10.1016/j.disc.2020.111982 |
Reference:
|
[16] Rowlinson, P.: Certain 3-decompositions of complete graphs, with an application to finite fields.Proc. R. Soc. Edinb., Sect. A 99 (1985), 277-281. Zbl 0562.05044, MR 0785534, 10.1017/S0308210500014293 |
Reference:
|
[17] Rowlinson, P.: On graphs with just three distinct eigenvalues.Linear Algebra Appl. 507 (2016), 462-473. Zbl 1343.05096, MR 3536969, 10.1016/j.laa.2016.06.031 |
Reference:
|
[18] Rowlinson, P.: More on graphs with just three distinct eigenvalues.Appl. Anal. Discrete Math. 11 (2017), 74-80. MR 3648655, 10.2298/AADM161111033R |
Reference:
|
[19] Seidel, J. J.: Graphs and two-graphs.Proceedings of the 5th Southeastern Conference on Combinatorics, Graph Theory, and Computing Utilitas Mathematica Publication, Winnipeg (1974), 125-143. Zbl 0308.05120, MR 0364028 |
Reference:
|
[20] Simić, S. K., Stanić, Z.: Polynomial reconstruction of signed graphs.Linear Algebra Appl. 501 (2016), 390-408. Zbl 1334.05056, MR 3485074, 10.1016/j.laa.2016.03.036 |
Reference:
|
[21] Stanić, Z.: Regular Graphs: A Spectral Approach.De Gruyter Series in Discrete Mathematics and Applications 4. De Gruyter, Berlin (2017). Zbl 1370.05002, MR 3753662, 10.1515/9783110351347 |
Reference:
|
[22] Stanić, Z.: Integral regular net-balanced signed graphs with vertex degree at most four.Ars Math. Contemp. 17 (2019), 103-114. Zbl 1433.05142, MR 3998150, 10.26493/1855-3974.1740.803 |
Reference:
|
[23] Stanić, Z.: On strongly regular signed graphs.Discrete Appl. Math. 271 (2019), 184-190 corrigendum ibid. 284 640 2020. Zbl 1428.05331, MR 4030312, 10.1016/j.dam.2019.06.017 |
Reference:
|
[24] Stanić, Z.: Spectra of signed graphs with two eigenvalues.Appl. Math. Comput. 364 (2020), Article ID 124627, 9 pages. Zbl 1433.05210, MR 3996372, 10.1016/j.amc.2019.124627 |
Reference:
|
[25] Dam, E. R. van: Nonregular graphs with three eigenvalues.J. Comb. Theory, Ser. B 73 (1998), 101-118. Zbl 0917.05044, MR 1631983, 10.1006/jctb.1998.1815 |
Reference:
|
[26] Dam, E. R. van: Three-class association schemes.J. Algebr. Comb. 10 (1999), 69-107. Zbl 0929.05096, MR 1701285, 10.1023/A:1018628204156 |
Reference:
|
[27] Zaslavsky, T.: Signed graphs.Discrete Appl. Math. 4 (1982), 47-74. Zbl 0476.05080, MR 0676405, 10.1016/0166-218X(82)90033-6 |
Reference:
|
[28] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941 |
. |