Previous |  Up |  Next

Article

Title: Signed graphs with at most three eigenvalues (English)
Author: Ramezani, Farzaneh
Author: Rowlinson, Peter
Author: Stanić, Zoran
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 59-77
Summary lang: English
.
Category: math
.
Summary: We investigate signed graphs with just 2 or 3 distinct eigenvalues, mostly in the context of vertex-deleted subgraphs, the join of two signed graphs or association schemes. (English)
Keyword: signed graph
Keyword: join
Keyword: adjacency matrix
Keyword: main eigenvalue
Keyword: net-degree
Keyword: association scheme
MSC: 05C22
MSC: 05C50
idZBL: Zbl 07511553
idMR: MR4389106
DOI: 10.21136/CMJ.2021.0256-20
.
Date available: 2022-03-25T08:26:01Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149573
.
Reference: [1] elić, M. Anđ, Koledin, T., Stanić, Z.: On regular signed graphs with three eigenvalues.Discuss. Math., Graph Theory 40 (2020), 405-416. Zbl 1433.05139, MR 4060992, 10.7151/dmgt.2279
Reference: [2] Belardo, F., Cioabă, S. M., Koolen, J., Wang, J.: Open problems in the spectral theory of signed graphs.Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. Zbl 1421.05052, MR 3997096, 10.26493/2590-9770.1286.d7b
Reference: [3] Belardo, F., Simić, S. K.: On the Laplacian coefficients of signed graphs.Linear Algebra Appl. 475 (2015), 94-113. Zbl 1312.05078, MR 3325220, 10.1016/j.laa.2015.02.007
Reference: [4] Chan, H. C., Rodger, C. A., Seberry, J.: On inequivalent weighing matrices.Ars Comb. 21A (1986), 299-333. Zbl 0599.05013, MR 0835757
Reference: [5] Cheng, X.-M., Gavrilyuk, A. L., Greaves, G. R. W., Koolen, J. H.: Biregular graphs with three eigenvalues.Eur. J. Comb. 56 (2016), 57-80. Zbl 1335.05107, MR 3490095, 10.1016/j.ejc.2016.03.004
Reference: [6] Cheng, X.-M., Greaves, G. R. W., Koolen, J. H.: Graphs with three eigenvalues and second largest eigenvalue at most 1.J. Comb. Theory, Ser. B 129 (2018), 55-78. Zbl 1379.05072, MR 3758241, 10.1016/j.jctb.2017.09.004
Reference: [7] Colbourn, C. J., (eds.), J. H. Dinitz: Handbook of Combinatorial Designs.Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007). Zbl 1101.05001, MR 2246267, 10.1201/9781420010541
Reference: [8] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.J. A. Barth, Leipzig (1995). Zbl 0824.05046, MR 1324340
Reference: [9] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518
Reference: [10] Harada, M., Munemasa, A.: On the classification of weighing matrices and self-orthogonal codes.J. Comb. Des. 20 (2012), 45-57. Zbl 1252.05026, MR 2864617, 10.1002/jcd.20295
Reference: [11] Hou, Y., Tang, Z., Wang, D.: On signed graphs with just two distinct adjacency eigenvalues.Discrete Math. 342 (2019), Article ID 111615, 8 pages. Zbl 1422.05049, MR 3990025, 10.1016/j.disc.2019.111615
Reference: [12] McKee, J., Smyth, C.: Integer symmetric matrices having all their eigenvalues in the interval $[-2,2]$.J. Algebra 317 (2007), 260-290. Zbl 1140.15007, MR 2360149, 10.1016/j.jalgebra.2007.05.019
Reference: [13] Ramezani, F.: On the signed graphs with two distinct eigenvalues.Util. Math. 114 (2020), 33-48. Zbl 07274222, MR 4230326
Reference: [14] Ramezani, F.: Some regular signed graphs with only two distinct eigenvalues.(to appear) in Linear Multilinear Algebra. MR 4388842, 10.1080/03081087.2020.1736979
Reference: [15] Ramezani, F., Rowlinson, P., Stanić, Z.: On eigenvalue multiplicity in signed graphs.Discrete Math. 343 (2020), Article ID 111982, 8 pages. Zbl 07233221, MR 4107756, 10.1016/j.disc.2020.111982
Reference: [16] Rowlinson, P.: Certain 3-decompositions of complete graphs, with an application to finite fields.Proc. R. Soc. Edinb., Sect. A 99 (1985), 277-281. Zbl 0562.05044, MR 0785534, 10.1017/S0308210500014293
Reference: [17] Rowlinson, P.: On graphs with just three distinct eigenvalues.Linear Algebra Appl. 507 (2016), 462-473. Zbl 1343.05096, MR 3536969, 10.1016/j.laa.2016.06.031
Reference: [18] Rowlinson, P.: More on graphs with just three distinct eigenvalues.Appl. Anal. Discrete Math. 11 (2017), 74-80. MR 3648655, 10.2298/AADM161111033R
Reference: [19] Seidel, J. J.: Graphs and two-graphs.Proceedings of the 5th Southeastern Conference on Combinatorics, Graph Theory, and Computing Utilitas Mathematica Publication, Winnipeg (1974), 125-143. Zbl 0308.05120, MR 0364028
Reference: [20] Simić, S. K., Stanić, Z.: Polynomial reconstruction of signed graphs.Linear Algebra Appl. 501 (2016), 390-408. Zbl 1334.05056, MR 3485074, 10.1016/j.laa.2016.03.036
Reference: [21] Stanić, Z.: Regular Graphs: A Spectral Approach.De Gruyter Series in Discrete Mathematics and Applications 4. De Gruyter, Berlin (2017). Zbl 1370.05002, MR 3753662, 10.1515/9783110351347
Reference: [22] Stanić, Z.: Integral regular net-balanced signed graphs with vertex degree at most four.Ars Math. Contemp. 17 (2019), 103-114. Zbl 1433.05142, MR 3998150, 10.26493/1855-3974.1740.803
Reference: [23] Stanić, Z.: On strongly regular signed graphs.Discrete Appl. Math. 271 (2019), 184-190 corrigendum ibid. 284 640 2020. Zbl 1428.05331, MR 4030312, 10.1016/j.dam.2019.06.017
Reference: [24] Stanić, Z.: Spectra of signed graphs with two eigenvalues.Appl. Math. Comput. 364 (2020), Article ID 124627, 9 pages. Zbl 1433.05210, MR 3996372, 10.1016/j.amc.2019.124627
Reference: [25] Dam, E. R. van: Nonregular graphs with three eigenvalues.J. Comb. Theory, Ser. B 73 (1998), 101-118. Zbl 0917.05044, MR 1631983, 10.1006/jctb.1998.1815
Reference: [26] Dam, E. R. van: Three-class association schemes.J. Algebr. Comb. 10 (1999), 69-107. Zbl 0929.05096, MR 1701285, 10.1023/A:1018628204156
Reference: [27] Zaslavsky, T.: Signed graphs.Discrete Appl. Math. 4 (1982), 47-74. Zbl 0476.05080, MR 0676405, 10.1016/0166-218X(82)90033-6
Reference: [28] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941
.

Files

Files Size Format View
CzechMathJ_72-2022-1_3.pdf 310.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo