Previous |  Up |  Next

Article

Title: Orthogonality and complementation in the lattice of subspaces of a finite vector space (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 2
Year: 2022
Pages: 141-153
Summary lang: English
.
Category: math
.
Summary: We investigate the lattice ${\bf L}({\bf V})$ of subspaces of an $m$-dimensional vector space ${\bf V}$ over a finite field ${\rm GF}(q)$ with a prime power $q=p^n$ together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice ${\bf L}({\bf V})$ satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when ${\bf L}({\bf V})$ is orthomodular. For $m>1$ and $p\nmid m$ we show that ${\bf L}({\bf V})$ contains a $(2^m+2)$-element (non-Boolean) orthomodular lattice as a subposet. Finally, for $q$ being a prime and $m=2$ we characterize orthomodularity of ${\bf L}({\bf V})$ by a simple condition. (English)
Keyword: vector space
Keyword: lattice of subspaces
Keyword: finite field
Keyword: orthomodular lattice
Keyword: modular lattice
Keyword: Boolean lattice
Keyword: complementation
MSC: 06C05
MSC: 06C15
MSC: 12D15
MSC: 12E20
MSC: 15A03
idZBL: Zbl 07547246
idMR: MR4407348
DOI: 10.21136/MB.2021.0042-20
.
Date available: 2022-04-14T13:39:20Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/150322
.
Reference: [1] Beran, L.: Orthomodular Lattices. Algebraic Approach.Mathematics and Its Applications 18 (East European Series). D. Reidel, Dordrecht (1985),\99999DOI99999 10.1007/978-94-009-5215-7 . Zbl 0558.06008, MR 0784029
Reference: [2 ] Birkhoff, G.: Lattice Theory.American Mathematical Society Colloquium Publications 25. AMS, Providence ( 1979). Zbl 0505.06001, MR 0598630, 10.1090/coll/025
Reference: [3] Chajda, I., Länger, H.: The lattice of subspaces of a vector space over a finite field.Soft Comput. 23 (2019), 3261-3267. Zbl 07092395, 10.1007/s00500-019-03866-y
Reference: [4] Eckmann, J.-P., Zabey, P. C.: Impossibility of quantum mechanics in a Hilbert space over a finite field.Helv. Phys. Acta 42 (1969), 420-424 \99999MR99999 0246600 . Zbl 0181.56601, MR 0246600
Reference: [5] Giuntini, R., Ledda, A., Paoli, F.: A new view of effects in a Hilbert space.Stud. Log. 104 (2016), 1145-1177. Zbl 1417.06008, MR 3567676, 10.1007/s11225-016-9670-3
Reference: [6] Grätzer, G.: General Lattice Theory.Birkhäuser, Basel (2003). Zbl 1152.06300, MR 2451139, 10.1007/978-3-0348-7633-9
.

Files

Files Size Format View
MathBohem_147-2022-2_1.pdf 258.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo