Previous |  Up |  Next

Article

Title: On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators (English)
Author: Al Mohammady, Samir
Author: Ould Beinane, Sid Ahmed
Author: Ould Ahmed Mahmoud, Sid Ahmed
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 2
Year: 2022
Pages: 169-186
Summary lang: English
.
Category: math
.
Summary: The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let ${\mathcal H}$ be a Hilbert space and let $A$ be a positive bounded operator on ${\mathcal H}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in {\mathcal H}$, induces a semi-norm $\|{\cdot }\|_A$. This makes ${\mathcal H}$ into a semi-Hilbertian space. An operator $T\in {\mathcal B}_A({\mathcal H})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^{\sharp _A})^m]:=T^n(T^{\sharp _A})^m-(T^{\sharp _A})^mT^n=0$ for some positive integers $n$ and $m$. (English)
Keyword: semi-Hilbertian space
Keyword: $A$-normal operator
Keyword: $(n,m)$-normal operator
Keyword: $(n,m)$-quasinormal operator
MSC: 47B20
MSC: 47B50
MSC: 47B99
MSC: 54E40
idZBL: Zbl 07547248
idMR: MR4407350
DOI: 10.21136/MB.2021.0167-19
.
Date available: 2022-04-14T13:40:38Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/150326
.
Reference: [1] Abood, E. H., Al-loz, M. A.: On some generalization of normal operators on Hilbert space.Iraqi J. Sci. 56 (2015), 1786-1794.
Reference: [2] Abood, E. H., Al-loz, M. A.: On some generalizations of $(n,m)$-normal powers operators on Hilbert space.J. Progressive Res. Math. (JPRM) 7 (2016), 1063-1070.
Reference: [3] Alzuraiqi, S. A., Patel, A. B.: On $n$-normal operators.Gen. Math. Notes 1 (2010), 61-73. Zbl 1225.47023
Reference: [4] Arias, M. L., Corach, G., Gonzalez, M. C.: Metric properties of projections in semi-Hilbertian spaces.Integral Equations Oper. Theory 62 (2008), 11-28. Zbl 1181.46018, MR 2442900, 10.1007/s00020-008-1613-6
Reference: [5] Arias, M. L., Corach, G., Gonzalez, M. C.: Partial isometries in semi-Hilbertian spaces.Linear Algebra Appl. 428 (2008), 1460-1475. Zbl 1140.46009, MR 2388631, 10.1016/j.laa.2007.09.031
Reference: [6] Arias, M. L., Corach, G., Gonzalez, M. C.: Lifting properties in operator ranges.Acta Sci. Math. 75 (2009), 635-653. Zbl 1212.46048, MR 2590353
Reference: [7] Baklouti, H., Feki, K., Ahmed, O. A. M. Sid: Joint normality of operators in semi-Hilbertian spaces.Linear Multilinear Algebra 68 (2020), 845-866. Zbl 07178188, MR 4072783, 10.1080/03081087.2019.1593925
Reference: [8] Bavithra, V.: $(n,m)$-power quasi normal operators in semi-Hilbertian spaces.J. Math. Informatics 11 (2017), 125-129. 10.22457/jmi.v11a16
Reference: [9] Benali, A., Ahmed, O. A. M. Sid: $(\alpha,\beta)$-$A$-normal operators in semi-Hilbertian spaces.Afr. Mat. 30 (2019), 903-920. Zbl 07101153, MR 3993640, 10.1007/s13370-019-00690-3
Reference: [10] Chellali, C., Benali, A.: Class of $(A,n)$-power-hyponormal operators in semi-Hilbertian space.Func. Anal. Approx. Comput. 11 (2019), 13-21. Zbl 07158992, MR 4069434
Reference: [11] Chō, M., Lee, J. E., Tanahashic, K., Uchiyamad, A.: Remarks on $n$-normal operators.Filomat 32 (2018), 5441-5451. MR 3898586, 10.2298/FIL1815441C
Reference: [12] Chō, M., Načevska, B.: Spectral properties of $n$-normal operators.Filomat 32 (2018), 5063-5069. MR 3898553, 10.2298/FIL1814063C
Reference: [13] Douglas, R. G.: On majorization, factorization, and range inclusion of operators in Hilbert space.Proc. Am. Math. Soc. 17 (1966), 413-415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1
Reference: [14] Jah, S. H.: Class of $(A,n)$-power quasi-normal operators in semi-Hilbertian spaces.Int. J. Pure Appl. Math. 93 (2014), 61-83. Zbl 1331.47034, 10.12732/ijpam.v93i1.6
Reference: [15] Jibril, A. A. S.: On $n$-power normal operators.Arab. J. Sci. Eng., Sect. A, Sci. 33 (2008), 247-251. Zbl 1182.47025, MR 2467186
Reference: [16] Mary, J. S. I., Vijaylakshmi, P.: Fuglede-Putnam theorem and quasi-nilpotent part of $n$-normal operators.Tamkang J. Math. 46 (2015), (151-165). Zbl 1323.47023, MR 3352354, 10.5556/j.tkjm.46.2015.1665
Reference: [17] Saddi, A.: $A$-normal operators in semi-Hilbertian spaces.Aust. J. Math. Anal. Appl. 9 (2012), Article ID 5, 12 pages. Zbl 1259.47022, MR 2878497
Reference: [18] Ahmed, O. A. M. Sid, Benali, A.: Hyponormal and $k$-quasi-hyponormal operators on semi-Hilbertian spaces.Aust. J. Math. Anal. Appl. 13 (2016), Article ID 7, 22 pages. Zbl 1348.47022, MR 3513410
Reference: [19] Ahmed, O. A. M. Sid, Ahmed, O. B. Sid: On the classes $(n,m)$-power $D$-normal and $(n,m)$-power $D$-quasi-normal operators.Oper. Matrices 13 (2019), 705-732. Zbl 07142373, MR 4008507, 10.7153/oam-2019-13-51
Reference: [20] Ahmed, O. B. Sid, Ahmed, O. A. M. Sid: On the class of $n$-power $D$-$m$-quasi-normal operatos on Hilbert spaces.Oper. Matrices 14 (2020), 159-174. Zbl 07347976, MR 4080931, 10.7153/oam-2020-14-13
Reference: [21] Suciu, L.: Orthogonal decompositions induced by generalized contractions.Acta Sci. Math. 70 (2004), 751-765. Zbl 1087.47010, MR 2107539
.

Files

Files Size Format View
MathBohem_147-2022-2_3.pdf 262.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo