Previous |  Up |  Next

Article

Title: On weakened $(\alpha ,\delta )$-skew Armendariz rings (English)
Author: Farahani, Alireza Majdabadi
Author: Maghasedi, Mohammad
Author: Heydari, Farideh
Author: Tavallaee, Hamidagha
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 2
Year: 2022
Pages: 187-200
Summary lang: English
.
Category: math
.
Summary: In this note, for a ring endomorphism $\alpha $ and an $\alpha $-derivation $\delta $ of a ring $R$, the notion of weakened $(\alpha ,\delta )$-skew Armendariz rings is introduced as a generalization of $\alpha $-rigid rings and weak Armendariz rings. It is proved that $R$ is a weakened $(\alpha ,\delta )$-skew Armendariz ring if and only if $T_n(R)$ is weakened $(\bar {\alpha },\bar {\delta })$-skew Armendariz if and only if $R[x]/(x^n)$ is weakened $(\bar {\alpha },\bar {\delta })$-skew Armendariz ring for any positive integer $n$. (English)
Keyword: Armendariz ring
Keyword: $(\alpha ,\delta )$-skew Armendariz ring
Keyword: weak Armendariz ring
Keyword: weak $(\alpha ,\delta )$-skew Armendariz ring
MSC: 16S36
MSC: 16S50
MSC: 16S99
idZBL: Zbl 07547249
idMR: MR4407351
DOI: 10.21136/MB.2021.0005-20
.
Date available: 2022-04-14T13:41:08Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/150327
.
Reference: [1] Alhevaz, A., Moussavi, A., Habibi, M.: On rings having McCoy-like conditions.Commun. Algebra 40 (2012), 1195-1221. Zbl 1260.16024, MR 2912979, 10.1080/00927872.2010.548842
Reference: [2] Anderson, D. D., Camillo, V.: Armendariz rings and Gaussian rings.Commun. Algebra 26 (1998), 2265-2272. Zbl 0915.13001, MR 1626606, 10.1080/00927879808826274
Reference: [3] Anderson, D. D., Camillo, V.: Semigroups and rings whose zero products commute.Commun. Algebra 27 (1999), 2847-2852. Zbl 0929.16032, MR 1687281, 10.1080/00927879908826596
Reference: [4] Annin, S.: Associated primes over skew polynomial rings.Commun. Algebra 30 (2002), 2511-2528. Zbl 1010.16025, MR 1904650, 10.1081/AGB-120003481
Reference: [5] Armendariz, E. P.: A note on extensions of Baer and P.P.-rings.J. Aust. Math. Soc. 18 (1974), 470-473. Zbl 0292.16009, MR 0366979, 10.1017/S1446788700029190
Reference: [6] Chen, J., Yang, X., Zhou, Y.: On strongly clean matrix and triangular matrix rings.Commun. Algebra 34 (2006), 3659-3674. Zbl 1114.16024, MR 2262376, 10.1080/00927870600860791
Reference: [7] Chen, J., Zhou, Y.: Extensions of injectivity and coherent rings.Commun. Algebra 34 (2006), 275-288. Zbl 1112.16002, MR 2194766, 10.1080/00927870500346263
Reference: [8] Chen, W., Cui, S.: On weakly semicommutative rings.Commun. Math. Res. 27 (2011), 179-192. Zbl 1249.16041, MR 2808276
Reference: [9] Habibi, M., Moussavi, A.: On nil skew Armendariz rings.Asian-Eur. J. Math. 5 (2012), Article ID 1250017, 16 pages. Zbl 1263.16028, MR 2959844, 10.1142/S1793557112500179
Reference: [10] Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings.Acta. Math. Hung. 107 (2005), 207-224. Zbl 1081.16032, MR 2148584, 10.1007/s10474-005-0191-1
Reference: [11] Hirano, Y.: On the uniqueness of rings of coefficients in skew polynomial rings.Publ. Math. 54 (1999), 489-495. Zbl 0930.16018, MR 1694531
Reference: [12] Hong, C. Y., Kim, H. K., Kim, N. K., Kwak, T. K., Lee, Y., Park, K. S.: Rings whose nilpotent elements form a Levitzki radical ring.Commun. Algebra 35 (2007), 1379-1390. Zbl 1121.16021, MR 2313674, 10.1080/00927870601117597
Reference: [13] Hong, C. Y., Kim, N. K., Kwak, T. K.: Ore extensions of Baer and p.p.-rings.J. Pure Appl. Algebra 151 (2000), 215-226. Zbl 0982.16021, MR 1776431, 10.1016/S0022-4049(99)00020-1
Reference: [14] Huh, C., Lee, Y., Smoktunowicz, A.: Armendariz rings and semicommutative rings.Commun. Algebra 30 (2002), 751-761. Zbl 1023.16005, MR 1883022, 10.1081/AGB-120013179
Reference: [15] Kim, N. K., Lee, Y.: Armendariz rings and reduced rings.J. Algebra 223 (2000), 477-488. Zbl 0957.16018, MR 1735157, 10.1006/jabr.1999.8017
Reference: [16] Kim, N. K., Lee, Y.: Extensions of reversible rings.J. Pure Appl. Algebra 185 (2003), 207-223. Zbl 1040.16021, MR 2006427, 10.1016/S0022-4049(03)00109-9
Reference: [17] Krempa, J.: Some examples of reduced rings.Algebra Colloq. 3 (1996), 289-300. Zbl 0859.16019, MR 1422968
Reference: [18] Lam, T. Y., Leroy, A., Matczuk, J.: Primeness, semiprimeness and prime radical of Ore extensions.Commun. Algebra 25 (1997), 2459-2506. Zbl 0879.16016, MR 1459571, 10.1080/00927879708826000
Reference: [19] Lambek, J.: On the representation of modules by sheaves of factor modules.Can. Math. Bull. 14 (1971), 359-368. Zbl 0217.34005, MR 0313324, 10.4153/CMB-1971-065-1
Reference: [20] Liu, Z., Zhao, R.: On weak Armendariz rings.Commun. Algebra 34 (2006), 2607-2616. Zbl 1110.16026, MR 2240395, 10.1080/00927870600651398
Reference: [21] Moussavi, A., Hashemi, E.: On ($\alpha,\delta$)-skew Armendariz rings.J. Korean Math. Soc. 42 (2005), 353-363. Zbl 1090.16012, MR 2121504, 10.4134/JKMS.2005.42.2.353
Reference: [22] Rege, M. B., Chhawchharia, S.: Armendariz rings.Proc. Japan Acad., Ser. A 73 (1997), 14-17. Zbl 0960.16038, MR 1442245, 10.3792/pjaa.73.14
Reference: [23] Shin, G.: Prime ideals and sheaf representation of a pseudo symmetric rings.Trans. Am. Math. Soc. 184 (1973), 43-60. Zbl 0283.16021, MR 0338058, 10.1090/S0002-9947-1973-0338058-9
Reference: [24] Wang, Y., Jiang, M., Ren, Y.: Ore extensions over weakly 2-primal rings.Commun. Math. Res. 32 (2016), 70-82. Zbl 1363.16075, MR 3467810, 10.13447/j.1674-5647.2016.01.05
.

Files

Files Size Format View
MathBohem_147-2022-2_4.pdf 266.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo