Title:
|
Initial Maclaurin coefficient estimates for $\lambda $-pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions (English) |
Author:
|
Wanas, Abbas Kareem |
Author:
|
Frasin, Basem Aref |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
147 |
Issue:
|
2 |
Year:
|
2022 |
Pages:
|
201-210 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce and study two certain classes of holomorphic and bi-univalent functions associating $\lambda $-pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor--Maclaurin coefficients $\vert a_{2}\vert $ and $\vert a_{3}\vert $ for functions belonging to these classes. Further we point out certain special cases for our results. (English) |
Keyword:
|
holomorphic function |
Keyword:
|
bi-univalent function |
Keyword:
|
coefficient estimates |
Keyword:
|
$\lambda $-pseudo-starlike function |
Keyword:
|
Sakaguchi-type function |
MSC:
|
30C45 |
MSC:
|
30C50 |
idZBL:
|
Zbl 07547250 |
idMR:
|
MR4407352 |
DOI:
|
10.21136/MB.2021.0050-20 |
. |
Date available:
|
2022-04-14T13:41:53Z |
Last updated:
|
2022-09-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150328 |
. |
Reference:
|
[1] Adegani, E. A., Bulut, S., Zireh, A.: Coefficient estimates for a subclass of analytic bi-univalent functions.Bull. Korean Math. Soc. 55 (2018), 405-413. Zbl 1393.30010, MR 3789451, 10.4134/BKMS.b170051 |
Reference:
|
[2] Babalola, K. O.: On $\lambda $-pseudo-starlike functions.J. Class. Anal. 3 (2013), 137-147. Zbl 1412.30026, MR 3322264, 10.7153/jca-03-12 |
Reference:
|
[3] Brannan, D. A., Taha, T. S.: On some classes of bi-univalent functions.Stud. Univ. Babeş-Bolyai Math. 31 (1986), 70-77. Zbl 0614.30017, MR 0911858 |
Reference:
|
[4] Duren, P. L.: Univalent Functions.Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). Zbl 0514.30001, MR 0708494 |
Reference:
|
[5] Frasin, B. A.: Coefficient inequalities for certain classes of Sakaguchi type functions.Int. J. Nonlinear Sci. 10 (2010), 206-211. Zbl 1216.30008, MR 2745244 |
Reference:
|
[6] Frasin, B. A.: Coefficient bounds for certain classes of bi-univalent functions.Hacet. J. Math. Stat. 43 (2014), 383-389. Zbl 1307.30023, MR 3241315, 10.15672/hjms.2015449084 |
Reference:
|
[7] Frasin, B. A., Aouf, M. K.: New subclasses of bi-univalent functions.Appl. Math. Lett. 24 (2011), 1569-1573. Zbl 1218.30024, MR 2803711, 10.1016/j.aml.2011.03.048 |
Reference:
|
[8] Joshi, S., Joshi, S., Pawar, H.: On some subclasses of bi-univalent functions associated with pseudo-starlike functions.J. Egypt. Math. Soc. 24 (2016), 522-525. Zbl 1352.30009, MR 3553869, 10.1016/j.joems.2016.03.007 |
Reference:
|
[9] Li, X.-F., Wang, A.-P.: Two new subclasses of bi-univalent functions.Int. Math. Forum 7 (2012), 1495-1504. Zbl 1263.30006, MR 2967369 |
Reference:
|
[10] Magesh, N., Bulut, S.: Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions.Afr. Mat. 29 (2018), 203-209. Zbl 1399.30052, MR 3761423, 10.1007/s13370-017-0535-3 |
Reference:
|
[11] Mazi, E. P., Opoola, T. O.: On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions.Gen. Math. 25 (2017), 85-95. |
Reference:
|
[12] Murugusundaramoorthy, G., Magesh, N., Prameela, V.: Coefficient bounds for certain subclasses of bi-univalent function.Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages. Zbl 1292.30005, MR 3064526, 10.1155/2013/573017 |
Reference:
|
[13] Owa, S., Sekine, T., Yamakawa, R.: On Sakaguchi type functions.Appl. Math. Comput. 187 (2007), 356-361. Zbl 1113.30018, MR 2323589, 10.1016/j.amc.2006.08.133 |
Reference:
|
[14] Sakaguchi, K.: On a certain univalent mapping.J. Math. Soc. Japan 11 (1959), 72-75. Zbl 0085.29602, MR 0107005, 10.2969/jmsj/01110072 |
Reference:
|
[15] Şeker, B.: On a new subclass of bi-univalent functions defined by using Salagean operator.Turk. J. Math. 42 (2018), 2891-2896. Zbl 1424.30073, MR 3885420, 10.3906/mat-1507-100 |
Reference:
|
[16] Srivastava, H. M., Altınkaya, Ş., Yalçın, S.: Certain subclasses of bi-univalent functions associated with the Horadam polynomials.Iran. J. Sci. Technol., Trans. A, Sci. 43 (2019), 1873-1879. MR 3978601, 10.1007/s40995-018-0647-0 |
Reference:
|
[17] Srivastava, H. M., Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions.J. Egypt. Math. Soc. 23 (2015), 242-246. Zbl 1326.30019, MR 3355409, 10.1016/j.joems.2014.04.002 |
Reference:
|
[18] Srivastava, H. M., Eker, S. S., Ali, R. M.: Coefficient bounds for a certain class of analytic and bi-univalent functions.Filomat 29 (2015), 1839-1845. Zbl 06749151, MR 3403901, 10.2298/FIL1508839S |
Reference:
|
[19] Srivastava, H. M., Gaboury, S., Ghanim, F.: Coefficient estimates for some general subclasses of analytic and bi-univalent functions.Afr. Math. 28 (2017), 693-706. Zbl 1370.30009, MR 3687384, 10.1007/s13370-016-0478-0 |
Reference:
|
[20] Srivastava, H. M., Mishra, A. K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions.Appl. Math. Lett. 23 (2010), 1188-1192. Zbl 1201.30020, MR 2665593, 10.1016/j.aml.2010.05.009 |
Reference:
|
[21] Srivastava, H. M., Wanas, A. K.: Initial Maclaurin coefficient bounds for new subclasses of analytic and $m$-fold symmetric bi-univalent functions defined by a linear combination.Kyungpook Math. J. 59 (2019), 493-503. Zbl 1435.30064, MR 4020441, 10.1134/S0965542519030060 |
Reference:
|
[22] Wanas, A. K., Alina, A. L.: Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions.J. Phys., Conf. Ser. 1294 (2019), Article ID 032003, 6 pages. 10.1088/1742-6596/1294/3/032003 |
Reference:
|
[23] Wanas, A. K., Majeed, A. H.: Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points.Appl. Math. E-Notes 19 (2019), 14-21. Zbl 1427.30035, MR 3947083 |
Reference:
|
[24] Wanas, A. K., Yalçın, S.: Initial coefficient estimates for a new subclasses of analytic and $m$-fold symmetric bi-univalent functions.Malaya J. Mat. 7 (2019), 472-476. MR 3987769, 10.26637/MJM0703/0018 |
. |