Previous |  Up |  Next

Article

Title: Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning (English)
Author: Obradović, Milutin
Author: Tuneski, Nikola
Author: Zaprawa, Paweł
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 2
Year: 2022
Pages: 211-220
Summary lang: English
.
Category: math
.
Summary: We improve the bounds of the third order Hankel determinant for two classes of univalent functions with bounded turning. (English)
Keyword: analytic function
Keyword: univalent function
Keyword: Hankel determinant
Keyword: upper bound
Keyword: bounded turning
MSC: 30C45
MSC: 30C50
idZBL: Zbl 07547251
idMR: MR4407353
DOI: 10.21136/MB.2021.0078-20
.
Date available: 2022-04-14T13:42:35Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/150329
.
Reference: [1] Ali, R. M.: On a subclass of starlike functions.Rocky Mt. J. Math. 24 (1994), 447-451. Zbl 0816.30010, MR 1277337, 10.1216/rmjm/1181072410
Reference: [2] Bansal, D., Maharana, S., Prajapat, J. K.: Third order Hankel determinant for certain univalent functions.J. Korean Math. Soc. 52 (2015), 1139-1148. Zbl 1328.30005, MR 3418550, 10.4134/JKMS.2015.52.6.1139
Reference: [3] Carlson, F.: Sur les coefficients d'une fonction bornée dans le cercle unité.Ark. Mat. Astron. Fys. A27 (1940), 8 pages French. Zbl 0023.04905, MR 0003231
Reference: [4] Dienes, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable.Dover Publications, New York (1957). Zbl 0078.05901, MR 0089895
Reference: [5] Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications.California Monographs in Mathematical Sciences. University of California Press, Berkeley (1958). Zbl 0080.09501, MR 0094840
Reference: [6] Hayman, W. K.: On the second Hankel determinant of mean univalent functions.Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. Zbl 0158.32101, MR 0219715, 10.1112/plms/s3-18.1.77
Reference: [7] Janteng, A., Halim, S. A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part.JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Article ID 50, 5 pages. Zbl 1134.30310, MR 2221331
Reference: [8] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions.Int. J. Math. Anal., Ruse 1 (2007), 619-625. Zbl 1137.30308, MR 2370200
Reference: [9] Khatter, K., Ravichandran, V., Kumar, S. S.: Third Hankel determinant of starlike and convex functions.J. Anal. 28 (2020), 45-56. Zbl 1435.30049, MR 4077300, 10.1007/s41478-017-0037-6
Reference: [10] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound of the Hankel determinant of the third kind for convex functions.Bull. Aust. Math. Soc. 97 (2018), 435-445. Zbl 1394.30007, MR 3802458, 10.1017/S0004972717001125
Reference: [11] Krzyz, J.: A counter example concerning univalent functions.Folia Soc. Sci. Lublin. Mat. Fiz. Chem. 2 (1962), 57-58.
Reference: [12] Obradović, M., Tuneski, N.: Hankel determinant of second order for some classes of analytic functions.Available at https://arxiv.org/abs/1903.08069 (2019), 6 pages. MR 4392540
Reference: [13] Obradović, M., Tuneski, N.: New upper bounds of the third Hankel determinant for some classes of univalent functions.Available at https://arxiv.org/abs/1911.10770 (2020), 10 pages. MR 4198419
Reference: [14] Thomas, D. K., Tuneski, N., Vasudevarao, A.: Univalent Functions: A Primer.De Gruyter Studies in Mathematics 69. De Gruyter, Berlin (2018). Zbl 1397.30002, MR 3791816, 10.1515/9783110560961
Reference: [15] Krishna, D. Vamshee, Venkateswarlu, B., RamReddy, T.: Third Hankel determinant for bounded turning functions of order alpha.J. Niger. Math. Soc. 34 (2015), 121-127. Zbl 1353.30013, MR 3512016, 10.1016/j.jnnms.2015.03.001
.

Files

Files Size Format View
MathBohem_147-2022-2_6.pdf 196.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo