Title:
|
Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning (English) |
Author:
|
Obradović, Milutin |
Author:
|
Tuneski, Nikola |
Author:
|
Zaprawa, Paweł |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
147 |
Issue:
|
2 |
Year:
|
2022 |
Pages:
|
211-220 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We improve the bounds of the third order Hankel determinant for two classes of univalent functions with bounded turning. (English) |
Keyword:
|
analytic function |
Keyword:
|
univalent function |
Keyword:
|
Hankel determinant |
Keyword:
|
upper bound |
Keyword:
|
bounded turning |
MSC:
|
30C45 |
MSC:
|
30C50 |
idZBL:
|
Zbl 07547251 |
idMR:
|
MR4407353 |
DOI:
|
10.21136/MB.2021.0078-20 |
. |
Date available:
|
2022-04-14T13:42:35Z |
Last updated:
|
2022-09-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150329 |
. |
Reference:
|
[1] Ali, R. M.: On a subclass of starlike functions.Rocky Mt. J. Math. 24 (1994), 447-451. Zbl 0816.30010, MR 1277337, 10.1216/rmjm/1181072410 |
Reference:
|
[2] Bansal, D., Maharana, S., Prajapat, J. K.: Third order Hankel determinant for certain univalent functions.J. Korean Math. Soc. 52 (2015), 1139-1148. Zbl 1328.30005, MR 3418550, 10.4134/JKMS.2015.52.6.1139 |
Reference:
|
[3] Carlson, F.: Sur les coefficients d'une fonction bornée dans le cercle unité.Ark. Mat. Astron. Fys. A27 (1940), 8 pages French. Zbl 0023.04905, MR 0003231 |
Reference:
|
[4] Dienes, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable.Dover Publications, New York (1957). Zbl 0078.05901, MR 0089895 |
Reference:
|
[5] Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications.California Monographs in Mathematical Sciences. University of California Press, Berkeley (1958). Zbl 0080.09501, MR 0094840 |
Reference:
|
[6] Hayman, W. K.: On the second Hankel determinant of mean univalent functions.Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. Zbl 0158.32101, MR 0219715, 10.1112/plms/s3-18.1.77 |
Reference:
|
[7] Janteng, A., Halim, S. A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part.JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Article ID 50, 5 pages. Zbl 1134.30310, MR 2221331 |
Reference:
|
[8] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions.Int. J. Math. Anal., Ruse 1 (2007), 619-625. Zbl 1137.30308, MR 2370200 |
Reference:
|
[9] Khatter, K., Ravichandran, V., Kumar, S. S.: Third Hankel determinant of starlike and convex functions.J. Anal. 28 (2020), 45-56. Zbl 1435.30049, MR 4077300, 10.1007/s41478-017-0037-6 |
Reference:
|
[10] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound of the Hankel determinant of the third kind for convex functions.Bull. Aust. Math. Soc. 97 (2018), 435-445. Zbl 1394.30007, MR 3802458, 10.1017/S0004972717001125 |
Reference:
|
[11] Krzyz, J.: A counter example concerning univalent functions.Folia Soc. Sci. Lublin. Mat. Fiz. Chem. 2 (1962), 57-58. |
Reference:
|
[12] Obradović, M., Tuneski, N.: Hankel determinant of second order for some classes of analytic functions.Available at https://arxiv.org/abs/1903.08069 (2019), 6 pages. MR 4392540 |
Reference:
|
[13] Obradović, M., Tuneski, N.: New upper bounds of the third Hankel determinant for some classes of univalent functions.Available at https://arxiv.org/abs/1911.10770 (2020), 10 pages. MR 4198419 |
Reference:
|
[14] Thomas, D. K., Tuneski, N., Vasudevarao, A.: Univalent Functions: A Primer.De Gruyter Studies in Mathematics 69. De Gruyter, Berlin (2018). Zbl 1397.30002, MR 3791816, 10.1515/9783110560961 |
Reference:
|
[15] Krishna, D. Vamshee, Venkateswarlu, B., RamReddy, T.: Third Hankel determinant for bounded turning functions of order alpha.J. Niger. Math. Soc. 34 (2015), 121-127. Zbl 1353.30013, MR 3512016, 10.1016/j.jnnms.2015.03.001 |
. |