Previous |  Up |  Next

Article

Title: Weakly fuzzy topological entropy (English)
Author: Afsan, B M Uzzal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 2
Year: 2022
Pages: 221-236
Summary lang: English
.
Category: math
.
Summary: In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping $\psi \colon (X,\tau )\rightarrow (X,\tau )$, where $(X,\tau )$ is compact, is equal to the weakly fuzzy topological entropy of $\psi \colon (X,\omega (\tau ))\rightarrow (X,\omega (\tau ))$. We have also established an example that shows that the fuzzy topological entropy of İ. Tok (2005) cannot give such a bridge result to the topological entropy of Adler et al. (1965). Moreover, our definition of the weakly fuzzy topological entropy can be applied to find the topological entropy (namely weakly fuzzy topological entropy $h_w(\psi )$) of the mapping $\psi \colon X\rightarrow X$ (where $X$ is either compact or weakly fuzzy compact), whereas the topological entropy $h_a(\psi )$ of Adler does not exist for the mapping $\psi \colon X\rightarrow X$ (where $X$ is non-compact weakly fuzzy compact). Finally, a product theorem for the weakly fuzzy topological entropy has been established. (English)
Keyword: weakly fuzzy compact
Keyword: weakly fuzzy compact topological dynamical system
Keyword: weakly fuzzy topological entropy
MSC: 37B40
MSC: 37B99
MSC: 54A40
MSC: 54C70
idZBL: Zbl 07547252
idMR: MR4407354
DOI: 10.21136/MB.2021.0073-20
.
Date available: 2022-04-14T13:43:19Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/150330
.
Reference: [1] Adler, R. L., Konheim, A. G., McAndrew, M. H.: Topological entropy.Trans. Am. Math. Soc. 114 (1965), 309-319. Zbl 0127.13102, MR 175106, 10.1090/S0002-9947-1965-0175106-9
Reference: [2] Afsan, B M U., Basu, C. K.: Fuzzy toplogical entropy of fuzzy continuous functions on fuzzy topological spaces.Appl. Math. Lett. 24 (2011), 2030-2033. Zbl 1269.54003, MR 2826120, 10.1016/j.aml.2011.05.037
Reference: [3] Bowen, R.: Topological entropy and axiom $A$.Global Analysis, Proc. Sympos. Pure Math. 14 (1970), 23-42. Zbl 0207.54402, MR 0262459
Reference: [4] Bowen, R.: Topological entropy for noncompact sets.Trans. Am. Math. Soc. 184 (1973), 125-136. Zbl 0274.54030, MR 0338317, 10.1090/S0002-9947-1973-0338317-X
Reference: [5] Cánovas, J. S., Kupka, J.: Topological entropy of fuzzified dynamical systems.Fuzzy Sets Syst. 165 (2011), 37-49. Zbl 1252.37018, MR 2754584, 10.1016/j.fss.2010.10.020
Reference: [6] Cánovas, J. S., Rodríguez, J. M.: Topological entropy of maps on the real line.Topology Appl. 153 (2005), 735-746. Zbl 1085.37010, MR 2201485, 10.1016/j.topol.2005.01.006
Reference: [7] Pe{ñ}a, J. S. Cánovas, López, G. Soler: Topological entropy for induced hyperspace maps.Chaos Solitons Fractals 28 (2006), 979-982. Zbl 1097.54036, MR 2212786, 10.1016/j.chaos.2005.08.173
Reference: [8] Chang, C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [9] Dumitrescu, D.: On fuzzy partitions.Prepr., "Babes-Bolyai" Univ., Fac. Math., Res. Semin. 2 (1983), 57-60. Zbl 0529.62048, MR 0750491
Reference: [10] Dumitrescu, D.: Entropy of fuzzy process.Fuzzy Sets Syst. 55 (1993), 169-177. Zbl 0818.28008, MR 1215137, 10.1016/0165-0114(93)90129-6
Reference: [11] Dumitrescu, D.: Fuzzy measure and the entropy of fuzzy partitions.J. Math. Anal. Appl. 176 (1993), 359-373. Zbl 0782.28012, MR 1224152, 10.1006/jmaa.1993.1220
Reference: [12] Dumitrescu, D.: Entropy of a fuzzy dynamical systems.Fuzzy Sets Syst. 70 (1995), 45-57. Zbl 0876.28029, MR 1323286, 10.1016/0165-0114(94)00245-3
Reference: [13] Dumitrescu, D., Barbu, M.: Fuzzy entropy and processes.Prepr., "Babes-Bolyai" Univ., Fac. Math., Res. Semin. 6 (1985), 71-74. MR 0842212
Reference: [14] Goodwyn, L. W.: Topological entropy bounds measure-theoretic entropy.Proc. Am. Math. Soc. 23 (1969), 679-688. Zbl 0186.09804, MR 0247030, 10.1090/S0002-9939-1969-0247030-3
Reference: [15] Goodwyn, L. W.: Comparing topological entropy and measure-theoretic entropy.Am. J. Math. 94 (1972), 366-388. Zbl 0249.54021, MR 0310191, 10.2307/2374626
Reference: [16] Kwietniak, D., Oprocha, P.: Topological entropy and chaos for maps induced on hyperspaces.Chaos Solitons Fractals 33 (2007), 76-86. Zbl 1152.37306, MR 2301847, 10.1016/j.chaos.2005.12.033
Reference: [17] Liu, L., Wang, Y., Wei, G.: Topological entropy of continuous functions on topological spaces.Chaos Solitons Fractals 39 (2009), 417-427. Zbl 1197.37015, MR 2504577, 10.1016/j.chaos.2007.04.008
Reference: [18] Lowen, R.: Fuzzy topological spaces and fuzzy compactness.J. Math. Anal. Appl. 56 (1976), 621-633. Zbl 0342.54003, MR 0440482, 10.1016/0022-247X(76)90029-9
Reference: [19] Lowen, R.: Initial and final fuzzy topologies and the fuzzy Tychonoff theorem.J. Math. Anal. Appl. 58 (1977), 11-21. Zbl 0347.54002, MR 0440483, 10.1016/0022-247X(77)90223-2
Reference: [20] Markechová, D.: The entropy of fuzzy dynamical systems.BUSEFAL 38 (1989), 38-41.
Reference: [21] Markechová, D.: Isomorphism and conjugation of fuzzy dynamical systems.BUSEFAL 38 (1989), 94-101. Zbl 0677.93033
Reference: [22] Markechová, D.: The entropy of fuzzy dynamical systems and generators.Fuzzy Sets Syst. 48 (1992), 351-363. Zbl 0754.60005, MR 1178175, 10.1016/0165-0114(92)90350-D
Reference: [23] Markechová, D.: A note to the Kolmogorov-Sinaj entropy of fuzzy dynamical systems.Fuzzy Sets Syst. 64 (1994), 87-90. Zbl 0845.93054, MR 1281288, 10.1016/0165-0114(94)90009-4
Reference: [24] Pu, P.-M., Liu, Y.-M.: Fuzzy topology. I: Neighborhood structure of a fuzzy point and Moore-Smith convergence.J. Math. Anal. Appl. 76 (1980), 571-599. Zbl 0447.54006, MR 0587361, 10.1016/0022-247X(80)90048-7
Reference: [25] Pu, P.-M., Liu, Y.-M.: Fuzzy topology. II: Product and quotient spaces.J. Math. Anal. Appl. 77 (1980), 20-37. Zbl 0447.54007, MR 0591259, 10.1016/0022-247X(80)90258-9
Reference: [26] Riečan, B., Markechová, D.: The entropy of fuzzy dynamical systems, general scheme and generators.Fuzzy Sets Syst. 96 (1998), 191-199. Zbl 0926.94012, MR 1614814, 10.1016/S0165-0114(96)00266-7
Reference: [27] Thomas, R. F.: Some fundamental properties of continuous functions and topological entropy.Pac. J. Math. 141 (1990), 391-400. Zbl 0661.58026, MR 1035451, 10.2140/pjm.1990.141.391
Reference: [28] Tok, I.: On the fuzzy topological entropy function.JFS 28 (2005), 74-80.
Reference: [29] Walters, P.: An Introduction to Ergodic Theory.Graduate Texts in Mathematics 79. Springer, New York (1982). Zbl 0475.28009, MR 0648108, 10.1007/978-1-4612-5775-2
Reference: [30] Zadeh, L. A.: Fuzzy sets.Inf. Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
MathBohem_147-2022-2_7.pdf 281.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo