Title:
|
On the symmetric algebra of certain first syzygy modules (English) |
Author:
|
Restuccia, Gaetana |
Author:
|
Tang, Zhongming |
Author:
|
Utano, Rosanna |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
2 |
Year:
|
2022 |
Pages:
|
391-409 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(R,\frak {m})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\geq 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ of the first syzygy module ${\rm Syz}_1(\frak {m})$ of $\frak {m}$. When the minimal generators of $I$ are all of degree 2, the dimension of ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.\looseness -1 (English) |
Keyword:
|
symmetric algebra |
Keyword:
|
syzygy |
Keyword:
|
dimension |
Keyword:
|
depth |
MSC:
|
13C15 |
MSC:
|
13D02 |
idZBL:
|
Zbl 07547211 |
idMR:
|
MR4412766 |
DOI:
|
10.21136/CMJ.2021.0508-20 |
. |
Date available:
|
2022-04-21T19:00:33Z |
Last updated:
|
2024-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150408 |
. |
Reference:
|
[1] Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry.Graduate Texts in Mathematics 150. Springer, New York (1995). Zbl 0819.13001, MR 1322960, 10.1007/978-1-4612-5350-1 |
Reference:
|
[2] Eliahou, S., Kervaire, M.: Minimal resolution of some monomial ideals.J. Algebra 129 (1990), 1-25. Zbl 0701.13006, MR 1037391, 10.1016/0021-8693(90)90237-I |
Reference:
|
[3] Herzog, J., Hibi, T.: Monomial Ideals.Graduate Texts in Mathematics 260. Springer, London (2011). Zbl 1206.13001, MR 2724673, 10.1007/978-0-85729-106-6 |
Reference:
|
[4] Herzog, J., Restuccia, G., Rinaldo, G.: On the depth and regularity of the symmetric algebra.Beitr. Algebra Geom. 47 (2006), 29-51. Zbl 1101.13039, MR 2245654 |
Reference:
|
[5] Herzog, J., Restuccia, G., Tang, Z.: $s$-sequences and symmetric algebras.Manuscr. Math. 104 (2001), 479-501. Zbl 1058.13011, MR 1836109, 10.1007/s002290170022 |
Reference:
|
[6] Herzog, J., Tang, Z., Zarzuela, S.: Symmetric and Rees algebras of Koszul cycles and their Gröbner bases.Manuscr. Math. 112 (2003), 489-509. Zbl 1088.13518, MR 2064656, 10.1007/s00229-003-0420-2 |
Reference:
|
[7] Restuccia, G., Tang, Z., Utano, R.: On the symmetric algebra of the first syzygy of a graded maximal ideal.Commun. Algebra 44 (2016), 1110-1118. Zbl 1337.13010, MR 3463132, 10.1080/00927872.2014.999929 |
Reference:
|
[8] Restuccia, G., Tang, Z., Utano, R.: On invariants of certain symmetric algebras.Ann. Mat. Pura Appl. 197 (2018), 1923-1935. Zbl 1410.13011, MR 3855419, 10.1007/s10231-018-0756-6 |
Reference:
|
[9] Tang, Z.: On certain monomial sequences.J. Algebra 282 (2004), 831-842. Zbl 1147.13304, MR 2101086, 10.1016/j.jalgebra.2004.08.027 |
Reference:
|
[10] Villarreal, R. H.: Monomial Algebras.Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). Zbl 1002.13010, MR 1800904, 10.1201/9780824746193 |
. |