Previous |  Up |  Next

Article

Title: Steady Boussinesq system with mixed boundary conditions including friction conditions (English)
Author: Kim, Tujin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 5
Year: 2022
Pages: 593-613
Summary lang: English
.
Category: math
.
Summary: In this paper we are concerned with the steady Boussinesq system with mixed boundary conditions. The boundary conditions for fluid may include Tresca slip, leak, one-sided leak, velocity, vorticity, pressure and stress conditions together and the conditions for temperature may include Dirichlet, Neumann and Robin conditions together. For the problem involving the static pressure and stress boundary conditions, it is proved that if the data of the problem are small enough, then there exists a solution and the solution with small norm is unique. For the problem involving the total pressure and total stress boundary conditions, the existence of a solution is proved without smallness of the data. (English)
Keyword: heat-convection
Keyword: variational inequality
Keyword: mixed boundary conditions
Keyword: Tresca slip
Keyword: leak boundary conditions
Keyword: one-sided leak
Keyword: pressure boundary condition
Keyword: existence and uniqueness
MSC: 35J87
MSC: 35Q35
MSC: 49J40
MSC: 76D03
MSC: 76D05
idZBL: Zbl 07613014
idMR: MR4484888
DOI: 10.21136/AM.2022.0031-21
.
Date available: 2022-09-15T09:15:25Z
Last updated: 2024-11-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151027
.
Reference: [1] Acevedo, P., Amrouche, C., Conca, C.: Boussinesq system with non-homogeneous boundary conditions.Appl. Math. Lett. 53 (2016), 39-44 \99999DOI99999 10.1016/j.aml.2015.09.015 . Zbl 1333.35175, MR 3426553, 10.1016/j.aml.2015.09.015
Reference: [2] Alekseev, G. V., Smishliaev, A. B.: Solvability of the boundary-value problems for Boussinesq equations with inhomogeneous boundary conditions.J. Math. Fluid Mech. 3 (2001), 18-39 \99999DOI99999 10.1007/PL00000962 . Zbl 0989.35106, MR 1830653
Reference: [3] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces.Springer Monographs in Mathematics. Springer, Berlin (2010). Zbl 1197.35002, MR 2582280, 10.1007/978-1-4419-5542-5
Reference: [4] Chebotarev, A. Y.: Variational inequalities for Navier-Stokes type operators and one-sided problems for equations of viscous heat-conducting fluids.Math. Notes 70 (2001), 264-274. Zbl 1140.35548, MR 1882418, 10.1023/A:1010267111548
Reference: [5] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Mathematische Lehrbücher und Monographien. II. Abteilung 38. Academie, Berlin (1974), German. Zbl 0289.47029, MR 0636412
Reference: [6] Kim, H.: The existence and uniqueness of very weak solutions of the stationary Boussinesq system.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 317-330 \99999DOI99999 10.1016/j.na.2011.08.035 . Zbl 1229.35209, MR 2846803
Reference: [7] Kim, T., Cao, D.: Some properties on the surfaces of vector fields and its application to the Stokes and Navier-Stokes problems with mixed boundary conditions.Nonlinear Anal., Theory Methods Appl., Ser. A 113 (2015), 94-114. Zbl 1304.35551, MR 3281848, 10.1016/j.na.2014.09.017
Reference: [8] Kim, T., Cao, D.: The steady Navier-Stokes and Stokes systems with mixed boundary conditions including one-sided leaks and pressure.Methods Appl. Anal. 23 (2016), 329-364. Zbl 1372.35116, MR 3633953, 10.4310/MAA.2016.v23.n4.a3
Reference: [9] Kim, T., Cao, D.: Mixed boundary value problems of the system for steady flow of heat-conducting incompressible viscous fluids with dissipative heating.Methods Appl. Anal. 27 (2020), 87-124. Zbl 1448.35241, MR 4143709, 10.4310/MAA.2020.v27.n2.a1
Reference: [10] Kovtunov, D. A.: Solvability of the stationary heat convection problem for a high-viscosity fluid.Differ. Equ. 45 (2009), 73-85. Zbl 1176.35137, MR 2597096, 10.1134/S0012266109010091
Reference: [11] Morimoto, H.: On the existence of weak solutions of equations of natural convection.J. Fac. Sci., Univ. Tokyo, Sect. I A 36 (1989), 87-102 \99999MR99999 991021 . Zbl 0676.76079, MR 0991021
Reference: [12] Morimoto, H.: On the existence and uniqueness of the stationary solution to the equation of natural convection.Tokyo J. Math. 14 (1991), 217-226. Zbl 0739.35074, MR 1108168, 10.3836/tjm/1270130501
Reference: [13] Morimoto, H.: Heat convection equation with nonhomogeneous boundary conditions.Funkc. Ekvacioj, Ser. Int. 53 (2010), 213-229. Zbl 1205.35315, MR 2730621, 10.1619/fesi.53.213
Reference: [14] Naumann, J., Pokorný, M., Wolf, J.: On the existence of weak solutions to the equations of steady flow of heat-conducting fluids with dissipative heating.Nonlinear Anal., Real World Appl. 13 (2012), 1600-1620. Zbl 1254.76048, MR 2890996, 10.1016/j.nonrwa.2011.11.018
Reference: [15] Villamizar-Roa, E. J., Rodríguez-Bellido, M. A., Rojas-Medar, M. A.: The Boussinesq system with mixed nonsmooth boundary data.C. R., Math., Acad. Sci. Paris 343 (2006), 191-196. Zbl 1102.35031, MR 2246338, 10.1016/j.crma.2006.06.011
.

Files

Files Size Format View
AplMat_67-2022-5_3.pdf 294.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo