Previous |  Up |  Next

Article

Title: A free boundary problem for some modified predator-prey model in a higher dimensional environment (English)
Author: Cheng, Hongmei
Author: Fang, Qinhe
Author: Xia, Yang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 5
Year: 2022
Pages: 615-632
Summary lang: English
.
Category: math
.
Summary: We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as $t$ goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed. (English)
Keyword: free boundary
Keyword: predator-prey model
Keyword: spreading-vanishing dichotomy
Keyword: spreading speed
MSC: 35J60
MSC: 35K20
MSC: 35R35
MSC: 92B05
idZBL: Zbl 07613015
idMR: MR4484889
DOI: 10.21136/AM.2022.0297-20
.
Date available: 2022-09-15T09:16:04Z
Last updated: 2024-11-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151028
.
Reference: [1] Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation.Partial Differential Equations and Related Topics Lecture Notes in Mathematics 466. Springer, Berlin (1975), 5-49. Zbl 0325.35050, MR 0427837, 10.1007/BFb0070595
Reference: [2] Aronson, D. G., Weinberger, H. F.: Multidimensional nonlinear diffusion arising in population genetics.Adv. Math. 30 (1978), 33-76. Zbl 0407.92014, MR 511740, 10.1016/0001-8708(78)90130-5
Reference: [3] Bunting, G., Du, Y., Krakowski, K.: Spreading speed revisited: Analysis of a free boundary model.Netw. Heterog. Media 7 (2012), 583-603. Zbl 1302.35194, MR 3004677, 10.3934/nhm.2012.7.583
Reference: [4] Cantrell, R. S., Cosner, C.: Spatial Ecology Via Reaction-Diffusion Equations.Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Chichester (2003). Zbl 1087.92058, MR 2191264, 10.1002/0470871296
Reference: [5] Cheng, H., Yuan, R.: The spreading property for a prey-predator reaction-diffusion system with fractional diffusion.Frac. Calc. Appl. Anal. 18 (2015), 565-579. Zbl 06441500, MR 3351488, 10.1515/fca-2015-0035
Reference: [6] Cheng, H., Yuan, R.: Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion.Discrete Contin. Dyn. Syst. 37 (2017), 5422-5454. Zbl 1368.35063, MR 3668369, 10.3934/dcds.2017236
Reference: [7] Cheng, H., Yuan, R.: Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion.Appl. Math. Comput. 338 (2018), 12-24. Zbl 1427.35117, MR 3843677, 10.1016/j.amc.2018.04.049
Reference: [8] Du, Y., Guo, Z.: Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary. II.J. Differ. Equations 250 (2011), 4336-4366. Zbl 1222.35096, MR 2793257, 10.1016/j.jde.2011.02.011
Reference: [9] Du, Y., Guo, Z.: The Stefan problem for the Fisher-KPP equation.J. Differ. Equations 253 (2012), 996-1035. Zbl 1257.35110, MR 2922661, 10.1016/j.jde.2012.04.014
Reference: [10] Du, Y., Guo, Z., Peng, R.: A diffusive logistic model with a free boundary in time-periodic environment.J. Funct. Anal. 265 (2013), 2089-2142. Zbl 1282.35419, MR 3084498, 10.1016/j.jfa.2013.07.016
Reference: [11] Du, Y., Hsu, S.-B.: A diffusive predator-prey model in heterogeneous environment.J. Differ. Equations 203 (2004), 331-364. Zbl 1330.35467, MR 2073690, 10.1016/j.jde.2004.05.010
Reference: [12] Du, Y., Lin, Z.: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary.SIAM J. Math. Anal. 42 (2010), 377-405. Zbl 1219.35373, MR 2607347, 10.1137/090771089
Reference: [13] Du, Y., Lin, Z.: The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor.Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 3105-3132. Zbl 1310.35245, MR 3327894, 10.3934/dcdsb.2014.19.3105
Reference: [14] Du, Y., Lou, B.: Spreading and vanishing in nonlinear diffusion problems with free boundaries.J. Eur. Math. Soc. (JEMS) 17 (2015), 2673-2724. Zbl 1331.35399, MR 3420519, 10.4171/JEMS/568
Reference: [15] Ducrot, A.: Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system.J. Math. Pures Appl. (9) 100 (2013), 1-15. Zbl 1284.35066, MR 3057299, 10.1016/j.matpur.2012.10.009
Reference: [16] Fisher, R. A.: The wave of advance of advantageous genes.Ann. Eugenics, London 7 (1937), 355-369 \99999JFM99999 63.1111.04. 10.1111/j.1469-1809.1937.tb02153.x
Reference: [17] Guo, J.-S., Wu, C.-H.: On a free boundary problem for a two-species weak competition system.J. Dyn. Differ. Equations 24 (2012), 873-895. Zbl 1263.35132, MR 3000608, 10.1007/s10884-012-9267-0
Reference: [18] Hilhorst, D., Iida, M., Mimura, M., Ninomiya, H.: A competition-diffusion system approximation to the classical two-phase Stefan problem.Japan J. Ind. Appl. Math. 18 (2001), 161-180. Zbl 0980.35178, MR 1842906, 10.1007/BF03168569
Reference: [19] Kaneko, Y., Yamada, Y.: A free boundary problem for a reaction-diffusion equation appearing in ecology.Adv. Math. Sci. Appl. 21 (2011), 467-492. Zbl 1254.35248, MR 2953128
Reference: [20] Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models.Appl. Math. Lett. 14 (2001), 697-699. Zbl 0999.92036, MR 1836072, 10.1016/S0893-9659(01)80029-X
Reference: [21] Leslie, P. H., Gower, J. C.: The properties of a stochastic model for the predator-prey type of interaction between two species.Biometrika 47 (1960), 219-234. Zbl 0103.12502, MR 0122603, 10.1093/biomet/47.3-4.219
Reference: [22] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific, Singapore (1996). Zbl 0884.35001, MR 1465184, 10.1142/3302
Reference: [23] Lin, Z.: A free boundary problem for a predator-prey model.Nonlinearity 20 (2007), 1883-1892. Zbl 1126.35111, MR 2343682, 10.1088/0951-7715/20/8/004
Reference: [24] Liu, Y., Guo, Z., Smaily, M. E., Wang, L.: A Leslie-Gower predator-prey model with a free boundary.Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 2063-2084. Zbl 1420.35130, MR 3984737, 10.3934/dcdss.2019133
Reference: [25] Mimura, M., Yamada, Y., Yotsutani, S.: A free boundary problem in ecology.Japan J. Appl. Math. 2 (1985), 151-186. Zbl 0593.92019, MR 0839323, 10.1007/BF03167042
Reference: [26] Mimura, M., Yamada, Y., Yotsutani, S.: Stability analysis for free boundary problems in ecology.Hiroshima Math. J. 16 (1986), 477-498. Zbl 0617.35135, MR 0867576, 10.32917/hmj/1206130304
Reference: [27] Mimura, M., Yamada, Y., Yotsutani, S.: Free boundary problems for some reaction-diffusion equations.Hiroshima Math. J. 17 (1987), 241-280. Zbl 0649.35089, MR 0909614, 10.32917/hmj/1206130066
Reference: [28] Peng, R., Zhao, X.-Q.: The diffusive logistic model with a free boundary and seasonal succession.Discrete Contin. Dyn. Syst. 33 (2013), 2007-2031. Zbl 1273.35327, MR 3002741, 10.3934/dcds.2013.33.2007
Reference: [29] Wang, M.: On some free boundary problems of the prey-predator model.J. Differ. Equations 256 (2014), 3365-3394. Zbl 1317.35110, MR 3177899, 10.1016/j.jde.2014.02.013
Reference: [30] Wang, M., Zhao, J.: A free boundary problem for the predator-prey model with double free boundaries.J. Dyn. Differ. Equations 29 (2017), 957-979. Zbl 1373.35164, MR 3694817, 10.1007/s10884-015-9503-5
Reference: [31] Zhao, J., Wang, M.: A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment.Nonlinear Anal., Real World Appl. 16 (2014), 250-263. Zbl 1296.35220, MR 3123816, 10.1016/j.nonrwa.2013.10.003
.

Files

Files Size Format View
AplMat_67-2022-5_4.pdf 288.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo