Previous |  Up |  Next

Article

Keywords:
ideal; Radford Hopf algebra; principal ideal ring
Summary:
Let $H_{m,n}$ be the $mn^2$-dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of $8$-dimensional Radford Hopf algebra $H_{2,2}$ by generators.
References:
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[3] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
[4] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82. American Mathematical Society, Providence (1993). DOI 10.1090/cbms/082 | MR 1243637 | Zbl 0793.16029
[5] Radford, D. E.: On the coradical of a finite-dimensional Hopf algebra. Proc. Am. Math. Soc. 53 (1975), 9-15. DOI 10.1090/S0002-9939-1975-0396652-0 | MR 396652 | Zbl 0324.16009
[6] Wang, Z., Li, L., Zhang, Y.: Green rings of pointed rank one Hopf algebras of nilpotent type. Algebr. Represent. Theory 17 (2014), 1901-1924. DOI 10.1007/s10468-014-9484-9 | MR 3284336 | Zbl 1318.16032
[7] Wang, Z., Li, L., Zhang, Y.: Green rings of pointed rank one Hopf algebras of non-nilpotent type. J. Algebra 449 (2016), 108-137. DOI 10.1016/j.jalgebra.2015.11.002 | MR 3448167 | Zbl 1338.16039
[8] Wang, Y., Zheng, Y., Li, L.: On the ideals of the Radford Hopf algebras. Commun. Algebra 49 (2021), 4109-4122. DOI 10.1080/00927872.2021.1914073 | MR 4296825 | Zbl 07431245
Partner of
EuDML logo