Previous |  Up |  Next

Article

Title: Classification of ideals of $8$-dimensional Radford Hopf algebra (English)
Author: Wang, Yu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1019-1028
Summary lang: English
.
Category: math
.
Summary: Let $H_{m,n}$ be the $mn^2$-dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of $8$-dimensional Radford Hopf algebra $H_{2,2}$ by generators. (English)
Keyword: ideal
Keyword: Radford Hopf algebra
Keyword: principal ideal ring
MSC: 16D25
MSC: 20G42
idZBL: Zbl 07655778
idMR: MR4517591
DOI: 10.21136/CMJ.2022.0313-21
.
Date available: 2022-11-28T11:34:46Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151125
.
Reference: [1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309
Reference: [2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608
Reference: [3] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155. Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [4] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Regional Conference Series in Mathematics 82. American Mathematical Society, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082
Reference: [5] Radford, D. E.: On the coradical of a finite-dimensional Hopf algebra.Proc. Am. Math. Soc. 53 (1975), 9-15. Zbl 0324.16009, MR 396652, 10.1090/S0002-9939-1975-0396652-0
Reference: [6] Wang, Z., Li, L., Zhang, Y.: Green rings of pointed rank one Hopf algebras of nilpotent type.Algebr. Represent. Theory 17 (2014), 1901-1924. Zbl 1318.16032, MR 3284336, 10.1007/s10468-014-9484-9
Reference: [7] Wang, Z., Li, L., Zhang, Y.: Green rings of pointed rank one Hopf algebras of non-nilpotent type.J. Algebra 449 (2016), 108-137. Zbl 1338.16039, MR 3448167, 10.1016/j.jalgebra.2015.11.002
Reference: [8] Wang, Y., Zheng, Y., Li, L.: On the ideals of the Radford Hopf algebras.Commun. Algebra 49 (2021), 4109-4122. Zbl 07431245, MR 4296825, 10.1080/00927872.2021.1914073
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo