Previous |  Up |  Next

Article

Title: On supercharacter theoretic generalizations of monomial groups and Artin's conjecture (English)
Author: Cimpoeaş, Mircea
Author: Radu, Alexandru
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1065-1079
Summary lang: English
.
Category: math
.
Summary: We extend the notions of quasi-monomial groups and almost monomial groups in the framework of supercharacter theories, and we study their connection with Artin's conjecture regarding the holomorphy of Artin $L$-functions. (English)
Keyword: Artin $L$-function
Keyword: monomial group
Keyword: almost monomial group
Keyword: supercharacter theory
MSC: 11R42
MSC: 20C15
idZBL: Zbl 07655783
idMR: MR4517596
DOI: 10.21136/CMJ.2022.0352-21
.
Date available: 2022-11-28T11:37:31Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151130
.
Reference: [1] Aramata, H.: Über die Teilbarkeit der Dedekindschen Zetafunktionen.Proc. Imp. Acad. Jap. 9 (1933), 31-34 German. Zbl 0006.39703, MR 1568340, 10.3792/pia/1195580866
Reference: [2] Artin, E.: Über eine neue Art von $L$-Reihen.Abh. Math. Semin. Univ. Hamb. 3 (1924), 89-108 German \99999JFM99999 49.0123.01. MR 3069421, 10.1007/BF02954618
Reference: [3] Artin, E.: Zur Theorie der $L$-Reihen mit allgemeinen Gruppencharakteren.Abh. Math. Semin. Univ. Hamb. 8 (1931), 292-306 German \99999JFM99999 56.0173.02. MR 3069563, 10.1007/BF02941010
Reference: [4] Brauer, R.: On the zeta-functions of algebraic number fields.Am. J. Math. 69 (1947), 243-250. Zbl 0029.01502, MR 0020597, 10.2307/2371849
Reference: [5] Bruns, W., Gubeladze, J.: Polytopes, Rings and $K$-Theory.Springer Monographs in Mathematics. Springer, New York (2009). Zbl 1168.13001, MR 2508056, 10.1007/b105283
Reference: [6] Cimpoeaş, M., Nicolae, F.: Independence of Artin $L$-functions.Forum Math. 31 (2019), 529-534. Zbl 1428.11154, MR 3918455, 10.1515/forum-2018-0185
Reference: [7] Cimpoeaş, M., Nicolae, F.: Artin $L$-functions to almost monomial Galois groups.Forum Math. 32 (2020), 937-940. Zbl 1444.11226, MR 4116648, 10.1515/forum-2019-0288
Reference: [8] Diaconis, P., Isaacs, I. M.: Supercharacters and superclasses for algebra groups.Trans. Am. Math. Soc. 360 (2008), 2359-2392. Zbl 1137.20008, MR 2373317, 10.1090/S0002-9947-07-04365-6
Reference: [9] Group, GAP: GAP - Groups, Algorithms, Programming. Version 4.11.1.Available at https://www.gap-system.org/ (2021).
Reference: [10] Hendrickson, A. O. F.: Supercharacter theory constructions corresponding to Schur ring products.Commun. Algebra 40 (2012), 4420-4438. Zbl 1272.20005, MR 2989654, 10.1080/00927872.2011.602999
Reference: [11] Marberg, E.: A supercharacter analogue for normality.J. Algebra 332 (2011), 334-365. Zbl 1243.20011, MR 2774691, 10.1016/j.jalgebra.2011.02.019
Reference: [12] Nicolae, F.: On Artin's $L$-functions. I.J. Reine Angew. Math. 539 (2001), 179-184. Zbl 1013.11077, MR 1863859, 10.1515/crll.2001.073
Reference: [13] Nicolae, F.: On the semigroup of Artin's $L$-functions holomorphic at $s_0$.J. Number Theory 128 (2008), 2861-2864. Zbl 1176.11058, MR 2457840, 10.1016/j.jnt.2008.07.001
Reference: [14] Nicolae, F.: On holomorphic Artin $L$-functions.Monatsh. Math. 186 (2018), 679-683. Zbl 1404.11130, MR 3829218, 10.1007/s00605-017-1120-4
Reference: [15] Taketa, K.: Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen.Proc. Imp. Acad. Japan 6 (1930), 31-33 German \99999JFM99999 56.0133.03. MR 1568284, 10.3792/pia/1195581421
Reference: [16] Wong, P.-J.: Supercharacters and the Chebotarev density theorem.Acta Arith. 185 (2018), 281-295. Zbl 1415.11172, MR 3858390, 10.4064/aa180320-22-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo