Previous |  Up |  Next

Article

Title: The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part (English)
Author: Hu, Min
Author: Wang, Dinghuai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1121-1131
Summary lang: English
.
Category: math
.
Summary: A version of the John-Nirenberg inequality suitable for the functions $b\in {\rm BMO}$ with $b^{-}\in L^{\infty }$ is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator. (English)
Keyword: bounded mean oscillation
Keyword: commutator
Keyword: Hardy-Littlewood maximal operator, John-Nirenberg inequality
MSC: 42B25
MSC: 42B35
idZBL: Zbl 07655787
idMR: MR4517600
DOI: 10.21136/CMJ.2022.0362-21
.
Date available: 2022-11-28T11:39:57Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151134
.
Reference: [1] Bastero, J., Milman, M., Ruiz, F. J.: Commutators for the maximal and sharp functions.Proc. Am. Math. Soc. 128 (2000), 3329-3334. Zbl 0957.42010, MR 1777580, 10.1090/S0002-9939-00-05763-4
Reference: [2] Bennett, C., DeVore, R. A., Sharpley, R.: Weak-$L^\infty$ and BMO.Ann. Math. (2) 113 (1981), 601-611. Zbl 0465.42015, MR 0621018, 10.2307/2006999
Reference: [3] Bloom, S.: A commutator theorem and weighted BMO.Trans. Am. Math. Soc. 292 (1985), 103-122. Zbl 0578.42012, MR 0805955, 10.1090/S0002-9947-1985-0805955-5
Reference: [4] Chanillo, S.: A note on commutators.Indiana Univ. Math. J. 31 (1982), 7-16. Zbl 0523.42015, MR 0642611, 10.1512/iumj.1982.31.31002
Reference: [5] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables.Ann. Math. (2) 103 (1976), 611-635. Zbl 0326.32011, MR 0412721, 10.2307/1970954
Reference: [6] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116. North-Holland, Amsterdam (1985). Zbl 0578.46046, MR 0807149, 10.1016/s0304-0208(08)x7154-3
Reference: [7] Ho, K.-P.: Characterizations of BMO by $A_p$ weights and $p$-convexity.Hiroshima Math. J. 41 (2011), 153-165. Zbl 1227.42024, MR 2849152, 10.32917/hmj/1314204559
Reference: [8] Izuki, M., Noi, T., Sawano, Y.: The John-Nirenberg inequality in ball Banach function spaces and application to characterization of BMO.J. Inequal. Appl. 2019 (2019), Article ID 268, 11 pages. Zbl 07459296, MR 4025529, 10.1186/s13660-019-2220-6
Reference: [9] Janson, S.: Mean oscillation and commutators of singular integral operators.Ark. Math. 16 (1978), 263-270. Zbl 0404.42013, MR 0524754, 10.1007/BF02386000
Reference: [10] John, F., Nirenberg, L.: On functions of bounded mean oscillation.Commun. Pure Appl. Math. 14 (1961), 415-426. Zbl 0102.04302, MR 0131498, 10.1002/cpa.3160140317
Reference: [11] Martínez, Á. D., Spector, D.: An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces.Adv. Nonlinear Anal. 10 (2021), 877-894. Zbl 1478.46036, MR 4191703, 10.1515/anona-2020-0157
Reference: [12] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Am. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [13] Muckenhoupt, B., Wheeden, R. L.: Weighted bounded mean oscillation and the Hilbert transform.Stud. Math. 54 (1976), 221-237. Zbl 0318.26014, MR 0399741, 10.4064/sm-54-3-221-237
Reference: [14] Uchiyama, A.: On the compactness of operators of Hankel type.Tohoku Math. J., II. Ser. 30 (1978), 163-171. Zbl 0384.47023, MR 0467384, 10.2748/tmj/1178230105
Reference: [15] Wang, D.: Notes on commutator on the variable exponent Lebesgue spaces.Czech. Math. J. 69 (2019), 1029-1037. Zbl 07144872, MR 4039617, 10.21136/CMJ.2019.0590-17
Reference: [16] Wang, D., Zhou, J., Teng, Z.: Some characterizations of BLO space.Math. Nachr. 291 (2018), 1908-1918. Zbl 1400.30056, MR 3844813, 10.1002/mana.201700318
Reference: [17] Wang, D., Zhou, J., Teng, Z.: Characterizations of BMO and Lipschitz spaces in terms of $A_{p,q}$ weights and their applications.J. Aust. Math. Soc. 107 (2019), 381-391. Zbl 07135450, MR 4034596, 10.1017/S1446788718000447
Reference: [18] Zhang, P.: Multiple weighted estimates for commutators of multilinear maximal function.Acta Math. Sin., Engl. Ser. 31 (2015), 973-994. Zbl 1325.42025, MR 3343963, 10.1007/s10114-015-4293-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo