Previous |  Up |  Next

Article

Title: On quasi $n$-ideals of commutative rings (English)
Author: Anebri, Adam
Author: Mahdou, Najib
Author: Aslankarayiğit Uğurlu, Emel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1133-1144
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with a nonzero identity. In this study, we present a new class of ideals lying properly between the class of $n$-ideals and the class of \hbox {$(2,n)$-ideals}. A proper ideal $I$ of $R$ is said to be a quasi $n$-ideal if $\sqrt {I}$ is an $n$-ideal of $R.$ Many examples and results are given to disclose the relations between this new concept and others that already exist, namely, the $n$-ideals, the quasi primary ideals, the $(2,n)$-ideals and the \hbox {$pr$-ideals}. Moreover, we use the quasi $n$-ideals to characterize some kind of rings. Finally, we investigate quasi $n$-ideals under various contexts of constructions such as direct product, power series, idealization, and amalgamation of a ring along an ideal. (English)
Keyword: $n$-ideal
Keyword: quasi $n$-ideal
Keyword: $(2,n)$-ideal
MSC: 13A15
MSC: 13A18
idZBL: Zbl 07655788
idMR: MR4517601
DOI: 10.21136/CMJ.2022.0365-21
.
Date available: 2022-11-28T11:40:26Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151135
.
Reference: [1] Anderson, D. D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [2] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings.Bull. Korean Math. Soc. 51 (2014), 1163-1173. Zbl 1308.13001, MR 3248714, 10.4134/BKMS.2014.51.4.1163
Reference: [3] Călugăreanu, G.: $UN$-rings.J. Algebra Appl. 15 (2016), Article ID 1650182, 9 pages. Zbl 1397.16037, MR 3575972, 10.1142/S0219498816501826
Reference: [4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal.Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. Zbl 1177.13043, MR 2606283, 10.1515/9783110213188.155
Reference: [5] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in amalgamated algebras along an ideal.J. Pure Appl. Algebra 214 (2010), 1633-1641. Zbl 1191.13006, MR 2593689, 10.1016/j.jpaa.2009.12.008
Reference: [6] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties.J. Algebra Appl. 6 (2007), 443-459. Zbl 1126.13002, MR 2337762, 10.1142/S0219498807002326
Reference: [7] Fuchs, L.: On quasi-primary ideals.Acta Sci. Math. 11 (1947), 174-183. Zbl 0030.01101, MR 0021541
Reference: [8] Hizem, S., Benhissi, A.: Nonnil-Noetherian rings and the SFT property.Rocky Mt. J. Math. 41 (2011), 1483-1500. Zbl 1242.13027, MR 2838074, 10.1216/RMJ-2011-41-5-1483
Reference: [9] Mohamadian, R.: $r$-ideals in commutative rings.Turk. J. Math. 39 (2015), 733-749. Zbl 1348.13003, MR 3395802, 10.3906/mat-1503-35
Reference: [10] Tamekkante, M., Bouba, E. M.: $(2,n)$-ideals of commutative rings.J. Algebra Appl. 18 (2019), Article ID 1950103, 12 pages. Zbl 1412.13005, MR 3954657, 10.1142/S0219498819501032
Reference: [11] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings.Filomat 31 (2017), 2933-2941. Zbl 07418085, MR 3639382, 10.2298/FIL1710933T
Reference: [12] Tekir, U., Koç, S., Oral, K. H., Shum, K. P.: On 2-absorbing quasi-primary ideals in commutative rings.Commun. Math. Stat. 4 (2016), 55-62. Zbl 1338.13007, MR 3475842, 10.1007/s40304-015-0075-9
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo