Title: | On the structure of the 2-Iwasawa module of some number fields of degree 16 (English) |
Author: | Jerrari, Idriss |
Author: | Azizi, Abdelmalek |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 72 |
Issue: | 4 |
Year: | 2022 |
Pages: | 1145-1156 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $K$ be an imaginary cyclic quartic number field whose 2-class group is of type $(2, 2, 2)$, i.e., isomorphic to $\mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}$. The aim of this paper is to determine the structure of the Iwasawa module of the genus field $K^{(*)}$ of $K$. (English) |
Keyword: | cyclic quartic field |
Keyword: | cyclotomic $\mathbb Z_2$-extension |
Keyword: | 2-Iwasawa module |
Keyword: | 2-class group |
Keyword: | 2-rank |
MSC: | 11R16 |
MSC: | 11R18 |
MSC: | 11R20 |
MSC: | 11R23 |
MSC: | 11R29 |
idZBL: | Zbl 07655789 |
idMR: | MR4517602 |
DOI: | 10.21136/CMJ.2022.0398-21 |
. | |
Date available: | 2022-11-28T11:41:00Z |
Last updated: | 2023-04-11 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151136 |
. | |
Reference: | [1] Azizi, A., Jerrari, I., Zekhnini, A., Talbi, M.: On the second 2-class group $ Gal(K_2^{(2)}/K)$ of some imaginary quartic cyclic number field $K$.J. Number Theory 177 (2017), 562-588. Zbl 1428.11190, MR 3629256, 10.1016/j.jnt.2017.01.027 |
Reference: | [2] Brown, E., Parry, C. J.: The 2-class group of certain biquadratic number fields.J. Reine Angew. Math. 295 (1977), 61-71. Zbl 0355.12007, MR 0457398, 10.1515/crll.1977.295.61 |
Reference: | [3] Chems-Eddin, M. M.: The 2-Iwasawa module over certain octic elementary fields.Available at https://arxiv.org/abs/2007.05953 (2020), 4 pages. |
Reference: | [4] Chems-Eddin, M. M.: The rank of the 2-class group of some fields with large degree.Available at https://arxiv.org/abs/2001.00865 (2020), 9 pages. MR 4414147 |
Reference: | [5] Gras, G.: Sur les $\ell$-classes d'idéaux dans les extensions cycliques relatives de degré premier $\ell$. I.Ann. Inst. Fourier 23 (1973), 1-48 French. Zbl 0276.12013, MR 360519, 10.5802/aif.471 |
Reference: | [6] Gras, G.: Class Field Theory: From Theory to Practice.Springer Monographs in Mathematics. Springer, Berlin (2003). Zbl 1019.11032, MR 1941965, 10.1007/978-3-662-11323-3 |
Reference: | [7] Greenberg, R.: On the Iwasawa invariants of totally real number fields.Am. J. Math. 98 (1976), 263-284. Zbl 0334.12013, MR 0401702, 10.2307/2373625 |
Reference: | [8] Ishida, M.: The Genus Fields of Algebraic Number Fields.Lecture Notes in Mathematics 555. Springer, Berlin (1976). Zbl 0353.12001, MR 435028, 10.1007/BFb0100829 |
Reference: | [9] Kida, Y.: Cyclotomic $Z_2$-extensions of $J$-fields.J. Number Theory 14 (1982), 340-352. Zbl 0493.12015, MR 0660379, 10.1016/0022-314X(82)90069-5 |
Reference: | [10] Lemmermeyer, F.: Reciprocity Laws: From Euler to Eisenstein.Springer Monographs in Mathematics. Springer, Berlin (2000). Zbl 0949.11002, MR 1761696, 10.1007/978-3-662-12893-0 |
Reference: | [11] Müller, K.: Capitulation in the cyclotomic $Z_2$ extension of CM number fields.Math. Proc. Camb. Philos. Soc. 166 (2019), 371-380. Zbl 1462.11099, MR 3903123, 10.1017/S0305004118000026 |
Reference: | [12] Washington, L. C.: Introduction to Cyclotomic Fields.Graduate Texts in Mathematics 83. Springer, New York (1997). Zbl 0966.11047, MR 1421575, 10.1007/978-1-4612-1934-7 |
. |
Fulltext not available (moving wall 24 months)