Title:
|
On the structure of the 2-Iwasawa module of some number fields of degree 16 (English) |
Author:
|
Jerrari, Idriss |
Author:
|
Azizi, Abdelmalek |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
4 |
Year:
|
2022 |
Pages:
|
1145-1156 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $K$ be an imaginary cyclic quartic number field whose 2-class group is of type $(2, 2, 2)$, i.e., isomorphic to $\mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}$. The aim of this paper is to determine the structure of the Iwasawa module of the genus field $K^{(*)}$ of $K$. (English) |
Keyword:
|
cyclic quartic field |
Keyword:
|
cyclotomic $\mathbb Z_2$-extension |
Keyword:
|
2-Iwasawa module |
Keyword:
|
2-class group |
Keyword:
|
2-rank |
MSC:
|
11R16 |
MSC:
|
11R18 |
MSC:
|
11R20 |
MSC:
|
11R23 |
MSC:
|
11R29 |
idZBL:
|
Zbl 07655789 |
idMR:
|
MR4517602 |
DOI:
|
10.21136/CMJ.2022.0398-21 |
. |
Date available:
|
2022-11-28T11:41:00Z |
Last updated:
|
2025-01-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151136 |
. |
Reference:
|
[1] Azizi, A., Jerrari, I., Zekhnini, A., Talbi, M.: On the second 2-class group $ Gal(K_2^{(2)}/K)$ of some imaginary quartic cyclic number field $K$.J. Number Theory 177 (2017), 562-588. Zbl 1428.11190, MR 3629256, 10.1016/j.jnt.2017.01.027 |
Reference:
|
[2] Brown, E., Parry, C. J.: The 2-class group of certain biquadratic number fields.J. Reine Angew. Math. 295 (1977), 61-71. Zbl 0355.12007, MR 0457398, 10.1515/crll.1977.295.61 |
Reference:
|
[3] Chems-Eddin, M. M.: The 2-Iwasawa module over certain octic elementary fields.Available at https://arxiv.org/abs/2007.05953 (2020), 4 pages. |
Reference:
|
[4] Chems-Eddin, M. M.: The rank of the 2-class group of some fields with large degree.Available at https://arxiv.org/abs/2001.00865 (2020), 9 pages. MR 4414147 |
Reference:
|
[5] Gras, G.: Sur les $\ell$-classes d'idéaux dans les extensions cycliques relatives de degré premier $\ell$. I.Ann. Inst. Fourier 23 (1973), 1-48 French. Zbl 0276.12013, MR 360519, 10.5802/aif.471 |
Reference:
|
[6] Gras, G.: Class Field Theory: From Theory to Practice.Springer Monographs in Mathematics. Springer, Berlin (2003). Zbl 1019.11032, MR 1941965, 10.1007/978-3-662-11323-3 |
Reference:
|
[7] Greenberg, R.: On the Iwasawa invariants of totally real number fields.Am. J. Math. 98 (1976), 263-284. Zbl 0334.12013, MR 0401702, 10.2307/2373625 |
Reference:
|
[8] Ishida, M.: The Genus Fields of Algebraic Number Fields.Lecture Notes in Mathematics 555. Springer, Berlin (1976). Zbl 0353.12001, MR 435028, 10.1007/BFb0100829 |
Reference:
|
[9] Kida, Y.: Cyclotomic $Z_2$-extensions of $J$-fields.J. Number Theory 14 (1982), 340-352. Zbl 0493.12015, MR 0660379, 10.1016/0022-314X(82)90069-5 |
Reference:
|
[10] Lemmermeyer, F.: Reciprocity Laws: From Euler to Eisenstein.Springer Monographs in Mathematics. Springer, Berlin (2000). Zbl 0949.11002, MR 1761696, 10.1007/978-3-662-12893-0 |
Reference:
|
[11] Müller, K.: Capitulation in the cyclotomic $Z_2$ extension of CM number fields.Math. Proc. Camb. Philos. Soc. 166 (2019), 371-380. Zbl 1462.11099, MR 3903123, 10.1017/S0305004118000026 |
Reference:
|
[12] Washington, L. C.: Introduction to Cyclotomic Fields.Graduate Texts in Mathematics 83. Springer, New York (1997). Zbl 0966.11047, MR 1421575, 10.1007/978-1-4612-1934-7 |
. |