Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
cyclic quartic field; cyclotomic $\mathbb Z_2$-extension; 2-Iwasawa module; 2-class group; 2-rank
Summary:
Let $K$ be an imaginary cyclic quartic number field whose 2-class group is of type $(2, 2, 2)$, i.e., isomorphic to $\mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}$. The aim of this paper is to determine the structure of the Iwasawa module of the genus field $K^{(*)}$ of $K$.
References:
[1] Azizi, A., Jerrari, I., Zekhnini, A., Talbi, M.: On the second 2-class group $ Gal(K_2^{(2)}/K)$ of some imaginary quartic cyclic number field $K$. J. Number Theory 177 (2017), 562-588. DOI 10.1016/j.jnt.2017.01.027 | MR 3629256 | Zbl 1428.11190
[2] Brown, E., Parry, C. J.: The 2-class group of certain biquadratic number fields. J. Reine Angew. Math. 295 (1977), 61-71. DOI 10.1515/crll.1977.295.61 | MR 0457398 | Zbl 0355.12007
[3] Chems-Eddin, M. M.: The 2-Iwasawa module over certain octic elementary fields. Available at https://arxiv.org/abs/2007.05953 (2020), 4 pages.
[4] Chems-Eddin, M. M.: The rank of the 2-class group of some fields with large degree. Available at https://arxiv.org/abs/2001.00865 (2020), 9 pages. MR 4414147
[5] Gras, G.: Sur les $\ell$-classes d'idéaux dans les extensions cycliques relatives de degré premier $\ell$. I. Ann. Inst. Fourier 23 (1973), 1-48 French. DOI 10.5802/aif.471 | MR 360519 | Zbl 0276.12013
[6] Gras, G.: Class Field Theory: From Theory to Practice. Springer Monographs in Mathematics. Springer, Berlin (2003). DOI 10.1007/978-3-662-11323-3 | MR 1941965 | Zbl 1019.11032
[7] Greenberg, R.: On the Iwasawa invariants of totally real number fields. Am. J. Math. 98 (1976), 263-284. DOI 10.2307/2373625 | MR 0401702 | Zbl 0334.12013
[8] Ishida, M.: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer, Berlin (1976). DOI 10.1007/BFb0100829 | MR 435028 | Zbl 0353.12001
[9] Kida, Y.: Cyclotomic $Z_2$-extensions of $J$-fields. J. Number Theory 14 (1982), 340-352. DOI 10.1016/0022-314X(82)90069-5 | MR 0660379 | Zbl 0493.12015
[10] Lemmermeyer, F.: Reciprocity Laws: From Euler to Eisenstein. Springer Monographs in Mathematics. Springer, Berlin (2000). DOI 10.1007/978-3-662-12893-0 | MR 1761696 | Zbl 0949.11002
[11] Müller, K.: Capitulation in the cyclotomic $Z_2$ extension of CM number fields. Math. Proc. Camb. Philos. Soc. 166 (2019), 371-380. DOI 10.1017/S0305004118000026 | MR 3903123 | Zbl 1462.11099
[12] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics 83. Springer, New York (1997). DOI 10.1007/978-1-4612-1934-7 | MR 1421575 | Zbl 0966.11047
Partner of
EuDML logo