Previous |  Up |  Next

Article

Keywords:
harmonic function; mixed norm space; Carleson measure
Summary:
We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in $\mathbb {R}^n$. Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space.
References:
[1] Arsenović, M., Jovanović, T.: Embedding of harmonic mixed norm spaces on smoothly bounded domains in $\mathbb{R}^n$. Open Math. 17 (2019), 1260-1268. DOI 10.1515/math-2019-0108 | MR 4029571
[2] Arsenović, M., Shamoyan, R. F.: On embeddings, traces and multipliers in harmonic function spaces. Kragujevac J. Math. 37 (2013), 45-64. MR 3073697 | Zbl 1299.42022
[3] Calzi, M., Peloso, M. M.: Carleson and reverse Carleson measures on homogeneous Siegel domains. Available at https://arxiv.org/abs/2105.06342v2 (2021), 40 pages. MR 4345338
[4] Choe, B. R., Lee, Y. J., Na, K.: Toeplitz operators on harmonic Bergman spaces. Nagoya Math. J. 174 (2004), 165-186. DOI 10.1017/S0027763000008837 | MR 2066107 | Zbl 1067.47039
[5] Engliš, M.: Boundary singularity of Poisson and harmonic Bergman kernels. J. Math. Anal. Appl. 429 (2015), 233-272. DOI 10.1016/j.jmaa.2015.03.081 | MR 3339073 | Zbl 1316.32003
[6] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. DOI 10.1007/BF02392215 | MR 0447953 | Zbl 0257.46078
[7] Hu, Z.: Estimate for the integral mean of harmonic functions on bounded domains in $\mathbb{R}^n$. Sci. China, Ser. A 38 (1995), 36-46. MR 1335197 | Zbl 0824.31002
[8] Hu, Z., Lv, X.: Carleson type measures for harmonic mixed norm spaces with application to Toeplitz operators. Chin. Ann. Math., Ser. B 34 (2013), 623-638. DOI 10.1007/s11401-013-0776-x | MR 3072252 | Zbl 1294.47041
[9] Jovanović, T.: On Carleson-type embeddings for Bergman spaces of harmonic functions. Anal. Math. 44 (2018), 493-499. DOI 10.1007/s10476-017-0602-x | MR 3877590 | Zbl 1424.31003
[10] Kang, H., Koo, H.: Estimates of the harmonic Bergman kernel on smooth domains. J. Funct. Anal. 185 (2001), 220-239. DOI 10.1006/jfan.2001.3761 | MR 1853757 | Zbl 0983.31004
[11] Keshavarzi, H.: Characterization of forward, vanishing and reverse Bergman Carleson measures using sparse domination. Available at https://arxiv.org/abs/2110.08926v1 (2021), 23 pages.
[12] Nam, K., Park, I.: Volume integral means of harmonic functions on smooth boundary domains. Bull. Korean Math. Soc. 51 (2014), 1195-1204. DOI 10.4134/BKMS.2014.51.4.1195 | MR 3248717 | Zbl 1295.31015
[13] Oleinik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228-243. DOI 10.1007/BF01578546 | Zbl 0396.31001
[14] Tong, C., Li, J.: Carleson measures on the weighted Bergman spaces with Békollé weights. Chin. Ann. Math., Ser. B 42 (2021), 583-600. DOI 10.1007/s11401-021-0280-7 | MR 4289194 | Zbl 1471.32006
Partner of
EuDML logo