Title: | Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$ (English) |
Author: | Savković, Ivana |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 72 |
Issue: | 4 |
Year: | 2022 |
Pages: | 1205-1216 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in $\mathbb {R}^n$. Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space. (English) |
Keyword: | harmonic function |
Keyword: | mixed norm space |
Keyword: | Carleson measure |
MSC: | 31B05 |
MSC: | 42B35 |
idZBL: | Zbl 07655795 |
idMR: | MR4517608 |
DOI: | 10.21136/CMJ.2022.0018-22 |
. | |
Date available: | 2022-11-28T11:44:21Z |
Last updated: | 2023-04-11 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151142 |
. | |
Reference: | [1] Arsenović, M., Jovanović, T.: Embedding of harmonic mixed norm spaces on smoothly bounded domains in $\mathbb{R}^n$.Open Math. 17 (2019), 1260-1268. MR 4029571, 10.1515/math-2019-0108 |
Reference: | [2] Arsenović, M., Shamoyan, R. F.: On embeddings, traces and multipliers in harmonic function spaces.Kragujevac J. Math. 37 (2013), 45-64. Zbl 1299.42022, MR 3073697 |
Reference: | [3] Calzi, M., Peloso, M. M.: Carleson and reverse Carleson measures on homogeneous Siegel domains.Available at https://arxiv.org/abs/2105.06342v2 (2021), 40 pages. MR 4345338 |
Reference: | [4] Choe, B. R., Lee, Y. J., Na, K.: Toeplitz operators on harmonic Bergman spaces.Nagoya Math. J. 174 (2004), 165-186. Zbl 1067.47039, MR 2066107, 10.1017/S0027763000008837 |
Reference: | [5] Engliš, M.: Boundary singularity of Poisson and harmonic Bergman kernels.J. Math. Anal. Appl. 429 (2015), 233-272. Zbl 1316.32003, MR 3339073, 10.1016/j.jmaa.2015.03.081 |
Reference: | [6] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. Zbl 0257.46078, MR 0447953, 10.1007/BF02392215 |
Reference: | [7] Hu, Z.: Estimate for the integral mean of harmonic functions on bounded domains in $\mathbb{R}^n$.Sci. China, Ser. A 38 (1995), 36-46. Zbl 0824.31002, MR 1335197 |
Reference: | [8] Hu, Z., Lv, X.: Carleson type measures for harmonic mixed norm spaces with application to Toeplitz operators.Chin. Ann. Math., Ser. B 34 (2013), 623-638. Zbl 1294.47041, MR 3072252, 10.1007/s11401-013-0776-x |
Reference: | [9] Jovanović, T.: On Carleson-type embeddings for Bergman spaces of harmonic functions.Anal. Math. 44 (2018), 493-499. Zbl 1424.31003, MR 3877590, 10.1007/s10476-017-0602-x |
Reference: | [10] Kang, H., Koo, H.: Estimates of the harmonic Bergman kernel on smooth domains.J. Funct. Anal. 185 (2001), 220-239. Zbl 0983.31004, MR 1853757, 10.1006/jfan.2001.3761 |
Reference: | [11] Keshavarzi, H.: Characterization of forward, vanishing and reverse Bergman Carleson measures using sparse domination.Available at https://arxiv.org/abs/2110.08926v1 (2021), 23 pages. |
Reference: | [12] Nam, K., Park, I.: Volume integral means of harmonic functions on smooth boundary domains.Bull. Korean Math. Soc. 51 (2014), 1195-1204. Zbl 1295.31015, MR 3248717, 10.4134/BKMS.2014.51.4.1195 |
Reference: | [13] Oleinik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions.J. Sov. Math. 9 (1978), 228-243. Zbl 0396.31001, 10.1007/BF01578546 |
Reference: | [14] Tong, C., Li, J.: Carleson measures on the weighted Bergman spaces with Békollé weights.Chin. Ann. Math., Ser. B 42 (2021), 583-600. Zbl 1471.32006, MR 4289194, 10.1007/s11401-021-0280-7 |
. |
Fulltext not available (moving wall 24 months)