Title: | The Fourier transform in Lebesgue spaces (English) |
Author: | Talvila, Erik |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 1 |
Year: | 2025 |
Pages: | 179-191 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | For each $f\in L^p({\mathbb R)}$ ($1\leq p<\infty $) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each $p$, a norm is defined so that the space of Fourier transforms is isometrically isomorphic to $L^p({\mathbb R)}$. There is an exchange theorem and inversion in norm. (English) |
Keyword: | Fourier transform |
Keyword: | Lebesgue space |
Keyword: | tempered distribution |
Keyword: | generalised function |
Keyword: | Banach space |
Keyword: | continuous primitive integral |
MSC: | 26A42 |
MSC: | 42A38 |
MSC: | 46B04 |
MSC: | 46F10 |
DOI: | 10.21136/CMJ.2024.0001-23 |
. | |
Date available: | 2025-03-11T16:00:23Z |
Last updated: | 2025-03-19 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152903 |
. | |
Reference: | [1] Abdelhakim, A. A.: On the unboundedness in $L^q$ of the Fourier transform of $L^p$ functions.Available at https://arxiv.org/abs/1806.03912 (2020), 8 pages. 10.48550/arXiv.1806.03912 |
Reference: | [2] Babenko, K. I.: An inequality in the theory of Fourier integrals.Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961), 531-542 Russian. Zbl 0122.34404, MR 0138939 |
Reference: | [3] Beckner, W.: Inequalities in Fourier analysis.Ann. Math. (2) 102 (1975), 159-182. Zbl 0338.42017, MR 0385456, 10.2307/1970980 |
Reference: | [4] Bochner, S.: Lectures on Fourier Integrals.Annals of Mathematics Studies 42. Princeton University Press, Princeton (1959). Zbl 0085.31802, MR 0107124, 10.1515/9781400881994 |
Reference: | [5] W. F. Donoghue, Jr.: Distributions and Fourier Transforms.Pure and Applied Mathematics 32. Academic Press, New York (1969). Zbl 0188.18102, MR 3363413 |
Reference: | [6] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. I.McGraw-Hill, New York (1954). Zbl 0055.36401, MR 0061695 |
Reference: | [7] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications.John Wiley, New York (1999). Zbl 0924.28001, MR 1681462 |
Reference: | [8] Friedlander, F. G.: Introduction to the Theory of Distributions.Cambridge University Press, Cambridge (1998). Zbl 0971.46024, MR 1721032 |
Reference: | [9] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249. Springer, New York (2008). Zbl 1220.42001, MR 2445437, 10.1007/978-0-387-09432-8 |
Reference: | [10] Lieb, E. H., Loss, M.: Analysis.Graduate Studies in Mathematics 14. AMS, Providence (2001). Zbl 0966.26002, MR 1817225, 10.1090/gsm/014 |
Reference: | [11] McLeod, R. M.: The Generalized Riemann Integral.The Carus Mathematical Monographs 20. The Mathematical Association of America, Washington (1980). Zbl 0486.26005, MR 0588510, 10.5948/UPO9781614440208 |
Reference: | [12] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). Zbl 0232.42007, MR 0304972 |
Reference: | [13] Talvila, E.: The distributional Denjoy integral.Real Anal. Exch. 33 (2007/08), 51-82. Zbl 1154.26011, MR 2402863, 10.14321/realanalexch.33.1.0051 |
Reference: | [14] Talvila, E.: Fourier transform inversion using an elementary differential equation and a contour integral.Am. Math. Mon. 126 (2019), 717-727. Zbl 1422.42007, MR 4009888, 10.1080/00029890.2019.1632629 |
Reference: | [15] Titchmarsh, E. C.: A contribution to the theory of Fourier transforms.Proc. Lond. Math. Soc. (2) 23 (1924), 279-289 \99999JFM99999 50.0201.02. MR 1575191, 10.1112/plms/s2-23.1.279 |
. |
Fulltext not available (moving wall 24 months)