Previous |  Up |  Next

Article

Title: The Fourier transform in Lebesgue spaces (English)
Author: Talvila, Erik
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 179-191
Summary lang: English
.
Category: math
.
Summary: For each $f\in L^p({\mathbb R)}$ ($1\leq p<\infty $) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each $p$, a norm is defined so that the space of Fourier transforms is isometrically isomorphic to $L^p({\mathbb R)}$. There is an exchange theorem and inversion in norm. (English)
Keyword: Fourier transform
Keyword: Lebesgue space
Keyword: tempered distribution
Keyword: generalised function
Keyword: Banach space
Keyword: continuous primitive integral
MSC: 26A42
MSC: 42A38
MSC: 46B04
MSC: 46F10
DOI: 10.21136/CMJ.2024.0001-23
.
Date available: 2025-03-11T16:00:23Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152903
.
Reference: [1] Abdelhakim, A. A.: On the unboundedness in $L^q$ of the Fourier transform of $L^p$ functions.Available at https://arxiv.org/abs/1806.03912 (2020), 8 pages. 10.48550/arXiv.1806.03912
Reference: [2] Babenko, K. I.: An inequality in the theory of Fourier integrals.Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961), 531-542 Russian. Zbl 0122.34404, MR 0138939
Reference: [3] Beckner, W.: Inequalities in Fourier analysis.Ann. Math. (2) 102 (1975), 159-182. Zbl 0338.42017, MR 0385456, 10.2307/1970980
Reference: [4] Bochner, S.: Lectures on Fourier Integrals.Annals of Mathematics Studies 42. Princeton University Press, Princeton (1959). Zbl 0085.31802, MR 0107124, 10.1515/9781400881994
Reference: [5] W. F. Donoghue, Jr.: Distributions and Fourier Transforms.Pure and Applied Mathematics 32. Academic Press, New York (1969). Zbl 0188.18102, MR 3363413
Reference: [6] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. I.McGraw-Hill, New York (1954). Zbl 0055.36401, MR 0061695
Reference: [7] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications.John Wiley, New York (1999). Zbl 0924.28001, MR 1681462
Reference: [8] Friedlander, F. G.: Introduction to the Theory of Distributions.Cambridge University Press, Cambridge (1998). Zbl 0971.46024, MR 1721032
Reference: [9] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249. Springer, New York (2008). Zbl 1220.42001, MR 2445437, 10.1007/978-0-387-09432-8
Reference: [10] Lieb, E. H., Loss, M.: Analysis.Graduate Studies in Mathematics 14. AMS, Providence (2001). Zbl 0966.26002, MR 1817225, 10.1090/gsm/014
Reference: [11] McLeod, R. M.: The Generalized Riemann Integral.The Carus Mathematical Monographs 20. The Mathematical Association of America, Washington (1980). Zbl 0486.26005, MR 0588510, 10.5948/UPO9781614440208
Reference: [12] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). Zbl 0232.42007, MR 0304972
Reference: [13] Talvila, E.: The distributional Denjoy integral.Real Anal. Exch. 33 (2007/08), 51-82. Zbl 1154.26011, MR 2402863, 10.14321/realanalexch.33.1.0051
Reference: [14] Talvila, E.: Fourier transform inversion using an elementary differential equation and a contour integral.Am. Math. Mon. 126 (2019), 717-727. Zbl 1422.42007, MR 4009888, 10.1080/00029890.2019.1632629
Reference: [15] Titchmarsh, E. C.: A contribution to the theory of Fourier transforms.Proc. Lond. Math. Soc. (2) 23 (1924), 279-289 \99999JFM99999 50.0201.02. MR 1575191, 10.1112/plms/s2-23.1.279
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo