Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
generalized derivation; elementary operator; generalized inverse; Kato spectrum
Summary:
Let $L(H)$ denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space $H$. For $A,B\in L(H)$, the generalized derivation $\delta_{A,B}$ and the multiplication operator $M_{A,B}$ are defined on $L(H)$ by $\delta_{A,B}(X)=AX-XB$ and $M_{A,B}(X)=AXB$. In this paper, we give a characterization of bounded operators $A$ and $B$ such that the range of $M_{A,B}$ is closed. We present some sufficient conditions for $\delta_{A,B}$ to have closed range. Some related results are also given.
References:
[1] Anderson J. H., Foiaş C.: Properties which normal operators share with normal derivations and related operators. Pacific J. Math. 61 (1975), no. 2, 313–325. DOI 10.2140/pjm.1975.61.313 | MR 0412889
[2] Apostol C.: Inner derivations with closed range. Rev. Roumaine Math. Pures Appl. 21 (1976), no. 3, 249–265. MR 0410459
[3] Apostol C., Stampfli J.: On derivation ranges. Indiana Univ. Math. J. 25 (1976), no. 9, 857–869. MR 0412890
[4] Badea C., Mbekhta M.: Compressions of resolvents and maximal radius of regularity. Trans. Amer. Math. Soc. 351 (1999), no. 7, 2949–2960. DOI 10.1090/S0002-9947-99-02365-X | MR 1621709
[5] Caradus S. R.: Generalized Inverses and Operator Theory. Queen's Papers in Pure and Applied Mathematics, 50, Queen's University, Kingston, 1978. MR 0523736 | Zbl 0434.47003
[6] Davis C., Rosenthal P.: Solving linear operator equations. Canadian J. Math. 26 (1974), 1384–1389. DOI 10.4153/CJM-1974-132-6 | MR 0355649
[7] Fialkow L. A.: Structural properties of elementary operators. in Elementary Operators and Applications, Blaubeuren, 1991, World Sci. Publ., River Edge, 1992, pages 55–113. MR 1183937
[8] Fialkow L. A., Herrero D. A.: Inner derivations with closed range in the Calkin algebra. Indiana Univ. Math. J. 33 (1984), no. 2, 185–211. DOI 10.1512/iumj.1984.33.33010 | MR 0733896
[9] Laursen K. B., Neumann M. M.: An Introduction to Local Spectral Theory. London Mathematical Society Monographs, New Series, 20, The Clarendon Press, Oxford University Press, New York, 2000. MR 1747914
[10] Mbekhta M.: Résolvant généralisé et théorie spectrale. J. Operator Theory 21 (1989), no. 1, 69–105 (French). MR 1002122
[11] Rosenblum M.: On the operator equation $BX-XA=Q$. Duke Math. J. 23 (1956), 263–269. DOI 10.1215/S0012-7094-56-02324-9 | MR 0079235
[12] Stampfli J. G.: On the range of a hyponormal derivation. Proc. Amer. Math. Soc. 52 (1975), 117–120. DOI 10.1090/S0002-9939-1975-0377575-X | MR 0377575
Partner of
EuDML logo