Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Clairaut's theorem; surfaces of rotation; pseudo-Euclidean 4-space; geodesic curve
Summary:
Clairaut’s theorem is expressed on the surfaces of rotation in semi Euclidean 4-space. Moreover, the general equations of time-like geodesic curves are characterized according to the results of Clairaut's theorem on the hyperbolic surfaces of rotation and the elliptic surface of rotation, respectively.
References:
[1] Almaz F., Külahcı M. A.: On $x$-magnetic surfaces generated by trajectory of $x$-magnetic curves in null cone. General Letters in Mathematics 5 (2018), no. 2, 84–92. DOI 10.31559/glm2018.5.2.3
[2] Almaz F., Külahcı M. A.: A different interpretation on magnetic surfaces generated by special magnetic curve in $Q^{2}\subset E_{1}^{3}$. Adiyaman University Journal of Science 10 (2020), no. 2, 524–547.
[3] Almaz F., Külahcı M. A.: The notes on rotational surfaces in Galilean space. Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 2, Paper No. 2150017, 15 pages. DOI 10.1142/S0219887821500171 | MR 4209930
[4] Almaz F., Külahcı M. A.: A survey on tube surfaces in Galilean $3$-space. Journal of Polytechnic 25 (2022), no. 3, 1133–1142.
[5] Almaz F., Külahcı M. A.: The research on rotational surfaces in pseudo Euclidean $4$-space with index $2$. Acta Math. Univ. Comenian. (N.S.) 92 (2023), no. 3, 263–279. MR 4650249
[6] Arnol'd V. I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, 60, Springer, New York, 1989. DOI 10.1007/978-1-4757-2063-1 | MR 0997295
[7] Ganchev G., Milousheva V.: General rotational surfaces in the $4$-dimensional Minkowski space. Turkish. J. Math. 38 (2014), no. 5, 883–895. DOI 10.3906/mat-1312-10 | MR 3225667
[8] Goemans W.: Flat double rotational surfaces in Euclidean and Lorentz–Minkowski $4$-space. Publ. Inst. Math. (Beograd) (N.S.) 103 (117) (2018), 61–68. DOI 10.2298/PIM1817061G | MR 3812047
[9] Hoffmann C. M., Zhou J.: Visualization of surfaces in four-dimensional space. Purdue University, Department of Computer Science Technical Reports (1990), Paper 814, 37 pages.
[10] Lerner D.: Lie Derivatives, Isometries, and Killing Vectors. Lawrence, Kansas, Department of Mathematics, Univ. of Cansas, 2010.
[11] Lugo G.: Differential Geometry in Physics. University of North Carolina Wilmington, UNCW, 2021.
[12] Montiel S., Ros A.: Curves and Surfaces. Graduate Studies in Mathematics, 69, American Mathematical Society, Providence; Real Sociedad Matemática Española, Madrid, 2009. DOI 10.1090/gsm/069 | MR 2522595
[13] Pressley A.: Elementary Differential Geometry. Springer Undergraduate Mathematics Series, Springer, London, 2010. MR 2598317
[14] Shifrin T.: Differential Geometry: A First Course in Curves and Surfaces. Preliminary version, University of Georgia, 2011. MR 0726220
[15] Yaglom I. M.: A Simple Non-Euclidean Geometry and Its Physical Basis. Heidelberg Science Library, Springer, New York, 1979. MR 0520230
Partner of
EuDML logo