Previous |  Up |  Next

Article

Keywords:
stability; stabilization; free-matrix-based integral inequality; linear matrix inequality; $H_{\infty }$ dynamic output feedback controller
Summary:
The stability and stabilization of systems with time-varying delays and external disturbances are the subject of this study. To circumvent the limitation of the Bessel-Legendre inequality, which cannot treat a time-varying delay system because the resulting limit contains reciprocal convexity, the generalized free-matrix-based integral inequality is used to generate less conservative stability criteria. Improved stabilization requirements are proposed in the form of linear matrix inequalities by developing a new augmented Lyapuno-Krasovskii function. To achieve resolved controller gains, a method for designing a $H_\infty$ dynamic output feedback controller based on linear matrix inequalities is then provided. Finally, three examples are used to validate the advantages of the approach over existing methods.
References:
[1] Alaoui, S. B., Tissir, E. H., Chaibi, N., Haoussi, F. El: Regional stabilization and $h_\infty$ congestion control with input saturation. Trans. Institute of Measurement and Control 43 (2021), 10, 2196-2212. DOI 
[2] Briat, C.: Convergence and equivalence results for the Jensen's inequality application to time-delay and sampled-data systems. IEEE Trans. Automat. Control 56 (2011), 7, 1660-1665. DOI  | MR 2848277
[3] Briat, C.: Linear parameter-varying and time-delay systems. Anal. Observ. Filter. Control 3 (2014), 5-7. MR 3308420
[4] Chaibi, N., Tissir, E. H., Alaoui, S. B., Charqi, M., Idrissi, S.: H-infinity control of singular takagi-sugeno fuzzy systems with additive time-varying delays.
[5] Chaibi, N., Alaoui, S. B., Tissir, E. H.: Regional stabilization of tcp/aqm system with polytopic uncertainties and homogeneous segmented time delay. J. Franklin Inst. 357 (2020), 12, 8277-8297. DOI  | MR 4129080
[6] Chang, X. H., Zhang, L., Park, Ju. H.: Robust static output feedback $H_\infty$ control for uncertain fuzzy systems. Fuzzy Sets Syst. 273 (2015), 87-104. DOI  | MR 3347272
[7] Deepak, V. D., Arun, N. K., Shihabudheen, K. V.: Observer based stabilization of linear time delay systems using new augmented lkf. IFAC J. Systems Control 26 (2023), 100231. DOI  | MR 4653299
[8] Ding, S., Levant, A., Li, S.: Simple homogeneous sliding-mode controller. Automatica 67 (2016), 22-32. DOI  | MR 3471745
[9] El-Jimi, D., Chaibi, N., Boumhidi, I., Charqi, M.: Admissibility and stabilization of descriptor t-s fuzzy systems with two additive time-varying delays. Int. J. Dynamics Control 11 (2023), 5, 2438-2451. DOI  | MR 4631521
[10] El-Jimi, D., Chaibi, N., Boumhidi, I., Charqi, M.: Robust admissibility of uncertain t-s fuzzy singular systems with time-varying delay: An input-output approach. J. Control, Automat. Electr. Systems 34 (2023), 5, 951-962. DOI 
[11] Khaloufi, G. El, Chaibi, N., Alaoui, S. B., Boumhidi, I.: Generalized dissipativity dynamic output feedback control for coronary artery system. Trans. Institute of Measurement and Control 46 (2024), 4, 716-728. DOI 
[12] Kharitonov, V. L., Zhabko, A. P.: Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica 39 (2003), 1, 15-20. DOI  | MR 2136548
[13] Kwon, N. K., Park, I. S., Park, P. G., Park, Ch.: Dynamic output-feedback control for singular markovian jump system: Lmi approach. IEEE Trans. Automat. Control 62 (2017), 10, 5396-5400. DOI  | MR 3708917
[14] Lee, T. H., Park, Ju. H., Xu, S.: Relaxed conditions for stability of time-varying delay systems. Automatica 75 (2017), 11-15. DOI  | MR 3582147
[15] Lee, W. I., Lee, S. Y., Park, P. G.: Affine bessel-legendre inequality: Application to stability analysis for systems with time-varying delays. Automatica 93 (2018), 535-539. DOI  | MR 3810943
[16] Liu, K., Seuret, A., Xia, Y.: Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality. Automatica 76 (2017), 138-142. DOI  | MR 3590563
[17] Park, P. G., Ko, J. W., Jeong, Ch.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47 (2011), 1, 235-238. DOI 10.1016/j.automatica.2010.10.014 | MR 2878269
[18] Sadek, B. A., Houssaine, T. E., Noreddine, Ch.: On designing Lyapunov-Krasovskii functional for time-varying delay t-s fuzzy systems. J. Franklin Inst. 359 (2022), 5, 2192-2205. DOI 10.1016/j.jfranklin.2022.01.015 | MR 4393309
[19] Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: Application to time-delay systems. Automatica 49 (2013), 9, 2860-2866. DOI  | MR 3084475
[20] Seuret, A., Gouaisbaut, F.: Complete quadratic lyapunov functionals using bessel-legendre inequality. In: 2014 European Control Conference (ECC), IEEE, pp. 448-453.
[21] Seuret, A., Gouaisbaut, F.: Hierarchy of LMI conditions for the stability analysis of time-delay systems. Systems Control Lett. 81 (2015), 1-7. DOI  | MR 3353689
[22] Seuret, A., Gouaisbaut, F.: Stability of linear systems with time-varying delays using bessel-legendre inequalities. IEEE Trans. Automat. Control 63 (2018), 1, 225-232. DOI  | MR 3744841
[23] Shen, H., Li, F., Wu, Z.-Guang., Park, Ju. H., Sreeram, V.: Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters. IEEE Trans. Fuzzy Systems 26 (2018), 6, 3428-3439. DOI 
[24] Song, J., Niu, Y., Lam, J., Shu, Z.: A hybrid design approach for output feedback exponential stabilization of markovian jump systems. IEEE Trans. Automat. Control 63 (2018), 5, 1404-1417. DOI  | MR 3800534
[25] Sun, W., Su, S.-F., Wu, Y., Xia, J.: Novel adaptive fuzzy control for output constrained stochastic nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Systems 29 (2020), 5, 1188-1197. DOI 
[26] Venkatesh, M., Patra, S., Ray, G.: Observer-based controller design for linear time-varying delay systems using a new Lyapunov-Krasovskii functional. Int. J. Automat. Control 15 (2021), 1, 99-123. DOI 
[27] Wu, B., Chang, X.-H., Zhao, X.: Fuzzy $h_\infty$ output feedback control for nonlinear ncss with quantization and stochastic communication protocol. IEEE Trans. Fuzzy Systems 29 (2020), 9, 2623-2634. DOI 
[28] Wu, M., He, Y., She, J.-H., Liu, G.-P.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40 (2004), 8, 1435-1439. DOI  | MR 2153058
[29] Xu, S., Lam, J.: A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Systems Sci. 39 (2008), 12, 1095-1113. DOI  | MR 2468715
[30] Zeng, H.-B., Teo, K. L., He, Y.: A new looped-functional for stability analysis of sampled-data systems. Automatica 82 (2017), 328-331. DOI  | MR 3658773
[31] Zeng, H.-B., Liu, X.-G., Wang, W.: A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Appl. Math. Comput. 354 (2019), 1-8. DOI  | MR 3916004
[32] Zeng, H.-B., Liu, X.-G., Wang, W., Xiao, S.-P.: New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality. J. Franklin Inst. 356 (2019), 13, 7312-7321. DOI  | MR 3991513
[33] Zhang, Ch. K., He, Y., Jiang, L., Wu, M., Wang, Q. G.: An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 85 (2017), 481-485. DOI  | MR 3712893
[34] Zhang, J., Xia, Y., Shi, P., Mahmoud, M. S.: New results on stability and stabilisation of systems with interval time-varying delay. IET Control Theory Appl. 3 (2011), 429-436. DOI  | MR 2857652
Partner of
EuDML logo