[1] Akella, P.:
Structure of n-uninorms. Fuzzy Sets Syst. 158 (2007), 1631-1651.
DOI |
MR 2341328
[2] Alsina, C., Frank, M., Schweizer, B.:
Associative Functions: Triangular Norms and Copulas. World Scientific, New Jersery 2006.
Zbl 1100.39023
[3] Aşıcı, E.:
An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46.
DOI |
MR 3690353
[4] Clifford, A. H.:
Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646.
DOI
[5] Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press, Cambridge 1990.
[6] Drygaś, P.:
On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157.
DOI |
Zbl 1191.03039
[7] Ertugrul, Ü., Kesicioglu, M. N., Karacal, F.:
Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327.
DOI
[8] Fodor, J. C., Yager, R. R., Rybalov, A.:
Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.
DOI |
Zbl 1232.03015
[9] Gupta, V. K., Jayaram, B.:
Order based on associative operations. Inform. Sci. 566 (2021), 326-346.
DOI
[10] Gupta, V. K., Jayaram, B.:
On the pecking order between those of Mitsch and clifford. Math. Slovaca 73 (2023), 565-582.
DOI
[11] Gupta, V. K., Jayaram, B.:
Clifford's order obtained from uninorms on bounded lattices. Fuzzy Sets Syst. 462 (2023), 108384.
DOI
[12] Gupta, V. K., Jayaram, B.:
Importation lattices. Fuzzy Sets Syst. 405 (2021), 1-17.
DOI
[13] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[14] Kesicio\v{g}lu, M. N., Karaçal, F., Mesiar, R.:
Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71.
DOI
[15] Kesicioglu, M. N., Ertugrul, Ü., Karaçal, F.:
An equivalence relation based on the U-partial order. Inf. Sci. 411 (2017), 39-51.
DOI
[16] Kesicioglu, M. N., Ertugrul, Ü., Karaçal, F.:
Some notes on U-partial order. Kybernetika 55 (2019), 518-530.
DOI
[17] Karaçal, F., Kesicioglu, M. N.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.
[18] Li, G., Li, Z. B., Wang, J.:
Some results on the weak dominance relation between ordered weighted averaging operators and T-norms. Kybernetika 60 (2024), 379-393.
DOI
[19] Li, W. H., Qin, F., Zhao, Y. Y.:
A note on uninorms with continuous underlying operators. Fuzzy Sets Syst. 386 (2020), 36-47.
DOI
[20] Liu, Z. Q.:
Cliffords order based on non-commutative operations. Iran. J. Fuzzy Syst. 21 (2024), 77-90.
DOI
[21] Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.:
A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29 (2015) 1021-1037.
DOI
[22] Mesiarová-Zemánková, A.:
Characterization of uninorms with continuous underlying t-norm and t-conorms by means of ordinal sum construction. Int. J. Approx. Reason. 83 (2017), 176-192.
DOI
[23] Mesiarová-Zemánková, A.:
Characterization of n-uninorms with continuous underlying functions via z-ordinal sum construction. Int. J. Approx. Reason. 133 (2021), 60-79.
DOI
[24] Mitsch, H.:
A natural partial order for semigroups. Proc. Amer. Math. Soc. 97 (1986), 384-388.
DOI |
Zbl 0596.06015
[25] Nambooripad, K. S.:
The natural partial order on a regular semigroup. Proc. Edinb. Math. Soc. 23 (1980), 249-260.
DOI
[26] Nanavati, K., Jayaram, B.:
Order from non-associative operations. Fuzzy Sets Syst. 467 (2023), 108484.
DOI
[27] Qiao, J. S.:
On binary relations induced from overlap and grouping functions. Int. J. Approx. Reason. 106 (2019).
DOI
[28] Qin, F., Fu, L.:
A characterization of uninorms not internal on the boundary. Fuzzy Sets Syst. 469 (2023), 108641.
DOI
[29] Yager, R., Rybalov, A.:
Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.
DOI |
Zbl 0871.04007
[30] Su, Y., Qin, F., Zhao, B.:
On the inner structure of uninorms with continuous underlying operators. Fuzzy Sets Syst. 403 (2021), 1-9.
DOI
[31] Su, Y., Zong, W. W., Drygas, P.:
Properties of uninorms with the underlying operation given as ordinal sums. Fuzzy Sets Syst. 357 (2019), 47-57.
DOI
[32] Zong, W. W., Su, Y., Liu, H. W., Baets, B. De:
On the structure of 2-uninorms. Inform. Sci. 467 (2018), 506-527.
DOI