[1] Becerril-Borja, R., Montes-de-Oca, R.:
Sequential games with finite horizon and turn selection process: Finite strategy sets case. In: Proc. 5th the International Conference on Operations Research and Enterprise Systems (ICORES 2016) (2016), pp. 44-50.
DOI
[2] Becerril-Borja, R., Montes-de-Oca, R.:
A family of models for finite sequential games without a predetermined order of turns. In: Operations Research and Enterprise Systems: 5th International Conference ICORES 2016, Rome 2016, Revised Selected Papers, (B. Vitoriano and G. H. Parlier, eds.), pp. 35-51. Springer, Cham 2017.
DOI
[3] Becerril-Borja, R., Montes-de-Oca, R.:
Incomplete information and risk sensitive analysis of sequential games without a predetermined order of turns. Kybernetika 57 (2021), 312-331.
DOI
[4] Borj, O. K., Ramezani, N., Akbarzade, T. M. R.:
Using decision trees and a-cuts for solving matrix games with fuzzy payoffs. In: 2014 Iranian Conference on Intelligent Systems 2014, pp. 1-6.
DOI
[5] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.:
Markov decision processes on finite spaces with fuzzy total rewards. Kybernetika 58 (2022), 180-199.
DOI
[6] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R. I.:
An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 160-178.
DOI
[7] Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Boston 1991.
[8] Li, D.-F.:
A fast approach to compute fuzzy values of matrix games with payoffs of triangular fuzzy numbers. European J. Oper. Res. 223 (2012), 421-429.
DOI
[9] Maschler, M., Solan, E., Zamir, S.:
Game Theory. Cambridge University Press, Cambridge 2020.
DOI
[10] Nishizaki, I., Sakawa, M.:
Fuzzy and Multiobjective Games for Conflict Resolution. Physica-Verlag, Heidelberg, 2001.
Zbl 0973.91001
[11] Puri, M. L., Ralescu, D. A.:
Fuzzy random variable. J. Math. Anal. Appl. 114 (1986), 409-422.
DOI
[12] Rezvani, S., Molani, M.: Representation of trapezoidal fuzzy numbers with shape function. Ann. Fuzzy Math. Inform. 8 (2014), 89-112.
[13] Tadelis, S.: Game Theory: An Introduction. Princeton University Press, Princeton 2013.