[1] Ayadi, H., Mahfoudhi, N.:
Local exponential stabilization of a coupled ODE-Fisher's PDE system. Eur. J. Control 71 (2023), 100807.
DOI
[2] Boyd, S., Vandenberghe, L.:
Convex Optimization. Cambridge University Press, Cambridge 2004.
Zbl 1058.90049
[3] Chen, S., Vazquez, R., Krstic, M.:
Folding Backstepping Approach to Parabolic PDE Bilateral Boundary Control. IFAC PapersOnline 52 (2019), 2, 76-81.
DOI
[4] Coron, J. M.: Control and Nonlinearity. American Mathe-matical Society, 2017.
[5] Andrade, G. A. de, Vazquez, R., Karafyllis, I., Krstic, M.:
Backstepping Control of a Hyperbolic PDE System With Zero Characteristic Speed States. IEEE Trans. Automat. Control 69 (2024), 10, 6988-6995.
DOI
[6] Demir, C., Koga, S., Krstic, M.:
Input Delay Compensation for Neuron Growth by PDE Backstepping. IFAC-PapersOnline 55 (2022), 36, 49-54.
DOI
[7] Ecklebe, S., Gehring, N.:
Backstepping-based tracking control of the vertical gradient freeze crystal growth process. IFAC-PapersOnline 56 (2023), 2, 8171-8176.
DOI
[8] Evans, L. C.: Partial Differential Equations (Second Edition). American Mathematical Society, Providence 2010.
[9] Ghaderi, N., Keyanpour, M., Mojallali, H.:
Observer-based finite-time output feedback control of heat equation with Neumann boundary condition. J. Franklin Inst. 357 (2020), 9154-9173.
DOI
[10] Guo, C. L., Xie, C. K., Zhou, Z. C.:
Stabilization of Spatially Non-causal Reaction-diffusion Equation. Int. J. Robust Nonlin. 24 (2014), 1, 1-17.
DOI
[11] He, C. H., Xie, C. K., Zhen, Z. Y.:
Explicit control law of a coupled reaction-diffusion process. J. Franklin Inst. 354 (2017), 5, 2087-2101.
DOI
[12] Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM, Philadelphia 2008.
[13] Lei, Y., Liu, X. L., Xie, C. K.:
Stabilization of an ODE-PDE cascaded system by boundary control. J. Franklin Inst. 357 (2020), 14, 9248-9267.
DOI
[14] Li, R. C., JinLiu, F. F.:
Boundary output feedback stabilization for a cascaded wave PDE-ODE system with velocity recirculation and matched disturbance. Appl. Math. Comput. 444 (2023), 127827.
DOI
[15] Liao, X. M., Liu, Z., Chen, C. L. Philip, Zhang, Y., Wu, Z. Z.:
Event-triggered adaptive neural control for uncertain nonstrict-feedback nonlinear systems with full-state constraints and unknown actuator failures. Neurocomputing 490 (2022), 269-282.
DOI
[16] Liu, X. L., Xie, C. K.:
Control law in analytic expression of a system coupled by reaction-diffusion equation. Neurocomputing 137 (2020), 3, 104643.
DOI
[17] Qin, Y., Cao, L., Ren, H. R., Liang, H. J., Pan, Y. N.:
Adaptive optimal backstepping control for strict-feedback nonlinear systems with time-varying partial output constraints. J. Franklin Inst. 361 (2024), 2, 776-795.
DOI
[18] Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer, Cham 2004.
[19] Shi, J. H.: Combinatorial Identity. Hefei: University of Science and Technology of China Press, 2001.
[20] Si, Y. C., Xie, C. K., Zhen, Z. Y., Zhao, A. L.:
Local stabilization of coupled nonlinear parabolic equations by boundary control. J. Franklin Inst. 355 (2018), 13, 5592-5612.
DOI
[21] Wang, J., Krstic, M.:
Event-triggered Backstepping Control of $2 \times 2$ Hyperbolic PDE-ODE Systems. IFAC-PapersOnLine 53 (2020), 2, 7551-7556.
DOI
[22] Xu, X., Liu, L., Krstic, M., Feng, G.:
Stabilization of chains of linear parabolic PDE-ODE cascades. Automatica 148 (2023), 148, 110763.
DOI
[23] Zhen, Z. Y., Xie, C. K., Si, Y. C., He, C. H.:
Stabilization of the second order parabolic system by boundary control. Control Theory Appl. 35 (2019), 6, 859-867.
DOI
[24] Zhou, Z. C., Guo, C. L.:
Stabilization of linear heat equation with a heat source at intermediate point by boundary control. Automatica 49 (2013), 2, 448- 456.
DOI