Previous |  Up |  Next

Article

Keywords:
backstepping; boundary control; output tracking
Summary:
Boundary control to track the output reference of the heat equation is considered. A control input is implemented at one boundary while requiring the other boundary to track the output reference. By introducing the error system and backstepping transformation, the control law is designed. The undetermined coefficient method and two identities are used to obtain the analytical solution of the kernel function by complex mathematical calculation. This establishes an explicit control law and ensures that the error system can effectively achieve the desired closed-loop stability. Simulation results validate the proposed theoretical results.
References:
[1] Ayadi, H., Mahfoudhi, N.: Local exponential stabilization of a coupled ODE-Fisher's PDE system. Eur. J. Control 71 (2023), 100807. DOI 
[2] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge 2004. Zbl 1058.90049
[3] Chen, S., Vazquez, R., Krstic, M.: Folding Backstepping Approach to Parabolic PDE Bilateral Boundary Control. IFAC PapersOnline 52 (2019), 2, 76-81. DOI 
[4] Coron, J. M.: Control and Nonlinearity. American Mathe-matical Society, 2017.
[5] Andrade, G. A. de, Vazquez, R., Karafyllis, I., Krstic, M.: Backstepping Control of a Hyperbolic PDE System With Zero Characteristic Speed States. IEEE Trans. Automat. Control 69 (2024), 10, 6988-6995. DOI 
[6] Demir, C., Koga, S., Krstic, M.: Input Delay Compensation for Neuron Growth by PDE Backstepping. IFAC-PapersOnline 55 (2022), 36, 49-54. DOI 
[7] Ecklebe, S., Gehring, N.: Backstepping-based tracking control of the vertical gradient freeze crystal growth process. IFAC-PapersOnline 56 (2023), 2, 8171-8176. DOI 
[8] Evans, L. C.: Partial Differential Equations (Second Edition). American Mathematical Society, Providence 2010.
[9] Ghaderi, N., Keyanpour, M., Mojallali, H.: Observer-based finite-time output feedback control of heat equation with Neumann boundary condition. J. Franklin Inst. 357 (2020), 9154-9173. DOI 
[10] Guo, C. L., Xie, C. K., Zhou, Z. C.: Stabilization of Spatially Non-causal Reaction-diffusion Equation. Int. J. Robust Nonlin. 24 (2014), 1, 1-17. DOI 
[11] He, C. H., Xie, C. K., Zhen, Z. Y.: Explicit control law of a coupled reaction-diffusion process. J. Franklin Inst. 354 (2017), 5, 2087-2101. DOI 
[12] Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM, Philadelphia 2008.
[13] Lei, Y., Liu, X. L., Xie, C. K.: Stabilization of an ODE-PDE cascaded system by boundary control. J. Franklin Inst. 357 (2020), 14, 9248-9267. DOI 
[14] Li, R. C., JinLiu, F. F.: Boundary output feedback stabilization for a cascaded wave PDE-ODE system with velocity recirculation and matched disturbance. Appl. Math. Comput. 444 (2023), 127827. DOI 
[15] Liao, X. M., Liu, Z., Chen, C. L. Philip, Zhang, Y., Wu, Z. Z.: Event-triggered adaptive neural control for uncertain nonstrict-feedback nonlinear systems with full-state constraints and unknown actuator failures. Neurocomputing 490 (2022), 269-282. DOI 
[16] Liu, X. L., Xie, C. K.: Control law in analytic expression of a system coupled by reaction-diffusion equation. Neurocomputing 137 (2020), 3, 104643. DOI 
[17] Qin, Y., Cao, L., Ren, H. R., Liang, H. J., Pan, Y. N.: Adaptive optimal backstepping control for strict-feedback nonlinear systems with time-varying partial output constraints. J. Franklin Inst. 361 (2024), 2, 776-795. DOI 
[18] Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer, Cham 2004.
[19] Shi, J. H.: Combinatorial Identity. Hefei: University of Science and Technology of China Press, 2001.
[20] Si, Y. C., Xie, C. K., Zhen, Z. Y., Zhao, A. L.: Local stabilization of coupled nonlinear parabolic equations by boundary control. J. Franklin Inst. 355 (2018), 13, 5592-5612. DOI 
[21] Wang, J., Krstic, M.: Event-triggered Backstepping Control of $2 \times 2$ Hyperbolic PDE-ODE Systems. IFAC-PapersOnLine 53 (2020), 2, 7551-7556. DOI 
[22] Xu, X., Liu, L., Krstic, M., Feng, G.: Stabilization of chains of linear parabolic PDE-ODE cascades. Automatica 148 (2023), 148, 110763. DOI 
[23] Zhen, Z. Y., Xie, C. K., Si, Y. C., He, C. H.: Stabilization of the second order parabolic system by boundary control. Control Theory Appl. 35 (2019), 6, 859-867. DOI 
[24] Zhou, Z. C., Guo, C. L.: Stabilization of linear heat equation with a heat source at intermediate point by boundary control. Automatica 49 (2013), 2, 448- 456. DOI 
Partner of
EuDML logo