Previous |  Up |  Next

Article

Keywords:
interval-valued vector equilibrium problem; locally LU-efficient solution; optimality; convexificators
Summary:
In the article, one formulates Fritz John type and Karush-Kuhn-Tucker type necessary conditions for an interval-valued vector equilibrium problem having a locally LU-efficient solution, where convexificators demonstrate the solutions that are regular. Sufficient conditions for a locally weak LU-efficient solution have been entrenched by imposing appropriate assumptions along with generalized convexity. Some applications are presented for a constrained interval-valued vector variational inequality and a constrained interval-valued vector optimization problem.
References:
[1] Bhurjee, A. K., Panda, G.: Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 52 (2015), 156-167. DOI 
[2] Bhurjee, A. K., Panda, G.: Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 243 (2016), 335-348. DOI 10.1007/s10479-014-1644-0
[3] Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983.
[4] Demyanov, V. F.: Convexification and Concavification of a Positively Homogeneous Function by the Same Family of Linear Functions. Report 3,208,802. Universita di Pisa, 1994.
[5] Giannessi, F., Mastroeni, G., Pellegrini, L.: On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation. In: Vector Variational Inequalities and Vector Equilibria (F. Giannessi, ed.). Nonconvex Optim. Appl. 38 (2000), 153-215. DOI 10.1007/978-1-4613-0299-5_11
[6] Gong, X. H.: Optimality conditions for efficient solution to the vector equilibrium problems with constraints. Taiwanese J. Math. 16 (2012), 1453-1473. DOI 
[7] Gong, X. H.: Optimality conditions for vector equilibrium problems. J. Math. Anal. Appl. 342 (2008), 1455-1466. DOI 
[8] Gong, X. H.: Scalarization and optimality conditions for vector equilibrium problems. Nonlinear Analysis: Theory, Methods Appl. 73 (2010), 3598-3612. DOI 
[9] Ioffe, A. D.: Necessary and sufficient conditions for a local minimum. 1: a reduction theorem and first order conditions. SIAM J. Control Optim. 17 (1979), 245-250. DOI 
[10] Jayswal, A., Stancu-Minasian, I., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput.218 (2011), 4119-4127. DOI 
[11] Jayswal, A., Stancu-Minasian, I., Banerjee, J.: Optimality conditions and duality for interval-valued optimization problems using convexificators. Rendiconti del Circolo Matematico di Palermo 65 (2016), 17-32. DOI 
[12] Jeyakumar, V., Luc, D. T.: Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101 (1999), 599-621. DOI 
[13] Jeyakumar, V., Luc, D. T.: Approximate Jacobian matrices for nonsmooth continuous maps and C$^1$-optimization. SIAM J. Control Optim. 36 (1998), 1815-1832. DOI 
[14] Luu, D. V.: Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications. J. Optim. Theory Appl. 171 (2016), 643-665. DOI 
[15] Luu, D. V.: Necessary and sufficient conditions for efficiency via convexificators. J. Optim. Theory Appl. 160 (2014), 510-526. DOI 
[16] Luu, D. V.: Convexificators and necessary conditions for efficiency. Optimization 63 (2014), 321-335. DOI 
[17] Luu, D. V., Hang, D. D.: On optimality conditions for vector variational inequalities. J. Math. Anal. Appl. 412 (2014), 792-804. DOI 
[18] Luu, D. V., Hang, D. D.: Efficient solutions and optimality conditions for vector equilibrium problems. Math. Methods Oper. Res. 79 (2014), 163-177. DOI 
[19] Mordukhovich, B. S., Shao, Y.: On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2 (1995) 211-228.
[20] Morgan, J., Romaniello, M.: Scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivariational inequalities. J. Optim. Theory Appl. 130 (2006), 309-316. DOI 
[21] Ward, D. E., Lee, G. M.: On relations between vector optimization problems and vector variational inequalities. J. Optim. Theory Appl. 113 (2002), 583-596. DOI 
[22] Wu, H. C.: On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338 (2008), 299-316. DOI 
Partner of
EuDML logo