Previous |  Up |  Next

Article

Keywords:
aggregation operators; uninorms; t-norms; ordinal sums; bounded lattices
Summary:
Uninorms are a special type of aggregation operators proposed by Yager and Rybalov in 1996, and since then, there have been numerous research achievements on uninorms on the unit real interval. In 2015, the concept of uninorms was extended to a more general algebraic structure - bounded lattices. This article aims to study the construction of uninorms on bounded lattices. We first provide the construction methods of uninorms on bounded lattices by using ordinal sum t-norms or ordinal sum t-conorms. Then, we clarify that the new methods are the extensions of some construction methods in literature. Finally, some illustrative examples for the new constructions of uninorms on bounded lattices are provided. This study is the first attempt to construct using the ordinal sum underlying operators and it will open up new ideas for in-depth analysis of the structure of uninorms on bounded lattices.
References:
[1] Mesiar, E. Aşıcıand R.: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85. DOI 
[2] Aşıcı, E., Mesiar, R.: On generating uninorms on some special classes of bounded lattices. Fuzzy Sets Syst. 439 (2022), 102-125. DOI 
[3] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014, pp. 61-66. DOI 
[4] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367 (2016), 221-231. DOI 
[5] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019), 111-139. DOI 
[6] Çaylı, G. D., Mesiar, R.: Methods for obtaining uninorms on some special classes of bounded lattices. Iran. J. Fuzzy Syst. 20 (2023), 111-126. DOI 
[7] Çaylı, G. D.: A characterization of uninorms on bounded lattices via closure and interior operators. Kybernetika 59 (2023), 768-790. DOI 
[8] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order (Second edition). Cambridge University Press, New York 2002.
[9] Baets, B. De, Fodor, J.: Van Melles combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136. DOI 
[10] Baets, B. De: Idempotent uninorms. Eur. J. Oper. Res. 118 (1999), 631-642. DOI  | Zbl 1178.03070
[11] Dan, Y., Hu, B. Q., Qiao, J.: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209. DOI 
[12] Dvořák, A., Holčapek, M.: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inform. Sci. 515 (2020), 116-131. DOI 
[13] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. DOI  | Zbl 1232.03015
[14] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131. DOI 
[15] Ji, W.: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55. DOI 
[16] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. DOI 
[17] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[18] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. U.S.A. 8 (1942), 535-537. DOI 10.1073/pnas.28.12.535 | Zbl 0063.03886
[19] Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29 (2015), 1021-1037. DOI  | MR 3414365
[20] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. DOI 
[21] Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities. Pub. Math. Debrecen 8 (1961), 169-186. DOI 10.5486/PMD.1961.8.1-2.16
[22] Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Pub. Math. Debrecen 10 (1963), 69-81. DOI 10.5486/PMD.1963.10.1-4.09
[23] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416. DOI  | Zbl 1099.06004
[24] Sun, X. R., Liu, H. W.: Further characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 427 (2022), 96-108. DOI 
[25] Wang, X., He, P.: Some conditions under which the binary operators constructed by Çaylı are uninorms. J. Northwest Univ. (Nat. Sci. Ed.) 52 (2022), 4, 528-538 (in Chinese).
[26] Xie, A. F., Li, S. J.: On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104. DOI 
[27] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI  | Zbl 0871.04007
[28] Yager, R. R.: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175. DOI 
[29] Yager, R. R.: Defending against strategic manipulation in uninorm-based multi-agent decision making. Eur. J. Oper. Res. 141 (2002), 217-232. DOI  | Zbl 0998.90046
[30] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49. DOI 
[31] Zhang, H. P., Wu, M., Wang, Z., Ouyang, Y., Baets, B. De: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Syst. 423 (2021), 107-121. DOI 
Partner of
EuDML logo